Skip to main content

Advertisement

Log in

Regulation of p53 under hypoxic and inflammatory conditions in periodontium

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Different studies suggest that inflammation as well as hypoxia leads to an increase of p53 protein levels. However, the implication of p53 during oral inflammatory processes is still unknown. The aim of this study was therefore to investigate the effect of hypoxia and inflammation on p53 regulation in human periodontium in vitro and in vivo.

Materials and methods

Under hypoxic and normoxic conditions, human primary periodontal ligament (PDL) fibroblasts (n = 9) were stimulated with lipopolysaccharides (LPS) from Porphyromonas gingivalis (P.g.), a periodontal pathogenic bacterium. After different time points, cell viability was tested; p53 gene expression, protein synthesis, and activation were measured using quantitative RT-PCR, immunoblotting, and immunofluorescence. Moreover, healthy and inflamed periodontal tissues were obtained from 12 donors to analyze p53 protein in oral inflammatory diseases by immunohistochemistry.

Results

LPS-P.g. and hypoxia initially induced a significant upregulation of p53 mRNA expression and p53 protein levels. Nuclear translocation of p53 after inflammatory stimulation supported these findings. Hypoxia first enhanced p53 levels, but after 24 h of incubation, protein levels decreased, which was accompanied by an improvement of PDL cell viability. Immunohistochemistry revealed an elevation of p53 immunoreactivity in accordance to the progression of periodontal inflammation.

Conclusions

Our data indicate that p53 plays a pivotal role in PDL cell homeostasis and seems to be upregulated in oral inflammatory diseases.

Clinical relevance

Upregulation of p53 may promote the destruction of periodontal integrity. A possible relationship with carcinogenesis may be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brooks CL, Gu W (2006) p53 ubiquitination: Mdm2 and beyond. Mol. Cell 21:307–315

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  Google Scholar 

  3. Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat. Cell Biol. 15:2–8

    Article  PubMed  Google Scholar 

  4. Stiewe T (2007) The p53 family in differentiation and tumorigenesis. Nat. Rev. Cancer 7:165–168

    Article  PubMed  Google Scholar 

  5. Maddocks OD, Vousden KH (2011) Metabolic regulation by p53. J Mol Med (Berl) 89:237–245

    Article  Google Scholar 

  6. An WG, Kaneka M, Simon MC, Maltede E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1 alpha. Nature 392:405–208

    Article  PubMed  Google Scholar 

  7. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat. Med. 11:1306–1313

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bieging KT, Attardi LD (2012) Deconstructing p53 transcriptional networks in tumor suppression. Trends Cell Biol. 22:97–106

    Article  PubMed  Google Scholar 

  9. Vurusaner B, Poli G, Basaga H (2012) Tumor suppressor genes and ROS: complex networks of interactions. Free Radic. Biol. Med. 52:7–18

    Article  PubMed  Google Scholar 

  10. Gölz L, Memmert S, Rath-Deschner B, Jäger A, Appel T, Baumgarten G, Götz W, Frede S (2014) LPS from P. gingivalis and hypoxia increases oxidative stress in periodontal ligament fibroblasts and contributes to periodontitis. Mediat. Inflamm. 2014:986,264

    Google Scholar 

  11. Salvioli S, Capri M, Bucci L, Lanni C, Racchi M, Uberti D, Memo M, Mari D, Govoni S, Franceschi C (2009) Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol. Immunother. 58:1909–1917

    Article  PubMed  Google Scholar 

  12. Salehinejad J, Zare-Mahmoodabadi R, Saghafi S, Jafarian AH, Ghazi N, Rajaei AR, Marouzi P (2011) Immunohistochemical detection of p53 and PCNA in ameloblastoma and adenomatoid odontogenic tumor. J. Oral Sci. 53:213–217

    Article  PubMed  Google Scholar 

  13. Galvão CF, Gomes CC, Diniz MG, Vargas PA, de Paula AM, Mosqueda-Taylor A, Loyola AM, Gomez RS (2012) Loss of heterozygosity (LOH) in tumour suppressor genes in benign and malignant mixed odontogenic tumours. J Oral Pathol Med 41:389–393

    Article  PubMed  Google Scholar 

  14. Aoyama I, Yaegaki K, Calenic B, Ii H, Ishkitiev N, Imai T (2012) The role of p53 in an apoptotic process caused by an oral malodorous compound in periodontal tissues: a review. J Breath Res 6:017104

    Article  PubMed  Google Scholar 

  15. Dai R, Iwama A, Wang S, Kapila YL (2005) Disease-associated fibronectin matrix fragments trigger anoikis of human primary ligament cells: p53 and c-myc are suppressed. Apoptosis 10:503–512

    Article  PubMed  Google Scholar 

  16. Ghosh A, Joo NE, Chen TC, Kapila YL (2010) Proapoptotic fibronectin fragment induces the degradation of ubiquitinated p53 via proteasomes in periodontal ligament cells. J. Periodontal Res. 45:481–487

    PubMed  PubMed Central  Google Scholar 

  17. Tonetti MS, Cortellini D, Lang NP (1998) In situ detection of apoptosis at sites of chronic bacterially induced inflammation in human gingiva. Infect. Immun. 66:5190–5195

    PubMed  PubMed Central  Google Scholar 

  18. Calenic B, Yaegaki K, Kozhuharova A, Imai T (2010) Oral malodorous compound causes oxidative stress and p53-mediated programmed cell death in keratinocyte stem cells. J. Periodontol. 81:1317–1323

    Article  PubMed  Google Scholar 

  19. Marchesan JT, Scanlon CS, Soehren S, Matsuo M, Kapila YL (2011) Implications of cultured periodontal ligament cells for the clinical and experimental setting: a review. Arch. Oral Biol. 56:933–943

    Article  PubMed  PubMed Central  Google Scholar 

  20. Konermann A, Stabenow D, Knolle PA, Held SA, Deschner J, Jäger A (2012) Regulatory role of periodontal ligament fibroblasts for innate immune cell function and differentiation. Innate Immun 18:745–752

    Article  PubMed  Google Scholar 

  21. Thornton-Evans G, Eke P, Wei L, Palmer A, Moeti R, Hutchins S, Borrell LN (2013) Centers for Disease Control and Prevention (CDC). Periodontitis among adults aged ≥30 years - —United States, 2009–-2010. MMWR Surveill Summ 62 Suppl 3:129–-135

  22. Costa FO, Cota LO, Lages EJ, Cyrino RM, Oliveira AM, Oliveira PA, Cortelli JR (2013) Associations of duration of smoking cessation and cumulative smoking exposure with periodontitis. J. Oral Sci. 55:245–253

    Article  PubMed  Google Scholar 

  23. Michalowicz BS, Aeppli D, Virag JG, Klump DG, Hinrichs JE, Segal NL, Bouchard TJ, Pihlstrom BL (1991) Periodontal findings in adult twins. J. Periodontol. 62:293–299

    Article  PubMed  Google Scholar 

  24. Mucci LA, Björkman L, Douglass CW, Pedersen NL (2005) Environmental and heritable factors in the etiology of oral diseases-—a population-based study of Swedish twins. J. Dent. Res. 84:800–805

    Article  PubMed  Google Scholar 

  25. Meyer MS, Joshipura K, Giovannucci E, Michaud DS (2008) A review of the relationship between tooth loss, periodontal disease, and cancer. Cancer Causes Control 19:895–907

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hosomi N, Aoki S, Matsuo K, Deguchi K, Masugata H, Murao K, Ichihara N, Ohyama H, Dobashi H, Nezu T, Ohtsuki T, Yasuda O, Soejima H, Ogawa H, Izumi Y, Kohno M, Tanaka J, Matsumoto M (2012) Association of serum anti-periodontal pathogen antibody with ischemic stroke. Cerebrovasc. Dis. 34:385–392

    Article  PubMed  Google Scholar 

  27. Hayashi C, Gudino CV, Gibson FC, Genco CA (2010) Review: pPathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol 25:305–316

    Article  PubMed  PubMed Central  Google Scholar 

  28. Park HJ, Baek KH, Lee HL, Kwon A, Hwang HR, Qadir AS, Woo KM, Ryoo HM, Baek JH (2011) Hypoxia inducible factor-1α directly induces the expression of receptor activator of nuclear factor-κB ligand in periodontal ligament fibroblasts. Mol. Cell 31:573–578

    Article  Google Scholar 

  29. Gölz L, Memmert S, Rath-Deschner B, Jäger A, Appel T, Baumgarten G, Götz W, Frede S (2015) Hypoxia and P. gingivalis sSynergistically iInduce HIF-1 and NF-κB aActivation in PDL cCells and pPeriodontal dDiseases. Mediat. Inflamm. 2015:438,085

    Article  Google Scholar 

  30. Rath-Deschner B, Deschner J, Reimann S, Jager A, Gotz W (2009) Regulatory effects of biomechanical strain on the insulin-like growth factor system in human periodontal cells. J. Biomech. 42:2584–2589

    Article  PubMed  Google Scholar 

  31. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent Jr RL (1998) Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25:134–144

    Article  PubMed  Google Scholar 

  32. Hajishengallis G, Lamont RJ (2014) Breaking bad: manipulation of the host response by Porphyromonas gingivalis. Eur. J. Immunol. 44:328–338

    Article  PubMed  PubMed Central  Google Scholar 

  33. Comel A, Sorrentino G, Capaci V, Del Sal G (2014) The cytoplasmic side of p53’s oncosuppressive activities. FEBS Lett. 58:2600–2609

    Article  Google Scholar 

  34. Gamonal J, Bascones A, Acevedo A, Blanco E, Silva A (2001) Apoptosis in chronic adult periodontitis analyzed by in situ DNA breaks, electron microscopy, and immunohistochemistry. J. Periodontol. 72:517–525

    Article  PubMed  Google Scholar 

  35. Jarnbring F, Somogyi E, Dalton J, Gustafsson A, Klinge B (2002) Quantitative assessment of apoptotic and proliferative gingival keratinocytes in oral and sulcular epithelium in patients with gingivitis and periodontitis. J. Clin. Periodontol. 29:1065–1071

    Article  PubMed  Google Scholar 

  36. Bullon P, Fioroni M, Goteri G, Rubini C (2004) Battino M (2004) Immunohistochemical analysis of soft tissues in implants with healthy and peri-implantitis condition, and aggressive periodontitis. Clin Oral Implants Res 15:553–559

    Article  PubMed  Google Scholar 

  37. Bulut S, Uslu H, Ozdemir BH, Bulut OE (2006) Expression of caspase-3, p53 and Bcl-2 in generalized aggressive periodontitis. Head Face Med 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bascones A, Gamanol J, Gomez M, Silva A, Gonzalez MA (2004) New knowledge of the pathogenesis of periodontal disease. Quintessence Int. 35:706–716

    PubMed  Google Scholar 

  39. Kebschull M, Guarnieri P, Demmer RT, Bouelsteix AL, Pavlidis P, Papapanou PN (2013) Molecular differences between chronic and aggressive periodontitis. J. Dent. Res. 92:1081

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    Article  PubMed  Google Scholar 

  41. Finkel T (2003) Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15:247–254

    Article  PubMed  Google Scholar 

  42. Jackson AL, Loeb LA (2001) The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res. 477:7–21

    Article  PubMed  Google Scholar 

  43. Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA (2003) Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 23:8576–8585

    Article  PubMed  PubMed Central  Google Scholar 

  44. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    Article  PubMed  Google Scholar 

  45. Tan M, Li S, Swaroop M, Guan K, Oberley LW, Sun Y (1999) Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem 274:12061–12066

    Article  PubMed  Google Scholar 

  46. Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S, Hofseth LJ, Moake M, Nagashima M, Forrester KS, Harris CC (2004) p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res. 64:2350–2356

    Article  PubMed  Google Scholar 

  47. Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600

    Article  PubMed  Google Scholar 

  48. Yoon KA, Nakamura Y, Arakawa H (2004) Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J. Hum. Genet. 49:134–140

    Article  PubMed  Google Scholar 

  49. Graeber TG, Peterson JF, Tsai M, Monica K, Fornace AJ, Giaccia AJ (1994) Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol. 14:6264–6277

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors like to thank Tina Schaffrath, Inka Müller-Bay, and Elisa Vestewig for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Memmert.

Ethics declarations

Funding

The present study was supported by a grant from the German Research Foundation (Clinical Research Unit 208/TP7, TP9) and the Medical Faculty of the University of Bonn.

Conflict of interests

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. A vote of approval by the ethics committee of the Faculty of Medicine at the University of Bonn was obtained (Lfd.Nr 086/11).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

S. Memmert, L. Gölz, S. Frede, and W. Götz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memmert, S., Gölz, L., Pütz, P. et al. Regulation of p53 under hypoxic and inflammatory conditions in periodontium. Clin Oral Invest 20, 1781–1789 (2016). https://doi.org/10.1007/s00784-015-1679-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1679-x

Keywords

Navigation