Skip to main content

Advertisement

Log in

Effect of mold type, diameter, and uncured composite removal method on depth of cure

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

An Erratum to this article was published on 28 January 2016

Abstract

Objective

This study compared the effects of mold material and diameter on the thickness of cured composite remnants and depth of cure (DOC) of resin-based composites (RBC).

Material and methods

One Polywave® curing light was used to photo-cure two shades of the same “bulk-fill” RBC in 4, 6, or 10-mm internal diameter metal or white Delrin® molds. For 60 specimens, the uncured RBC was manually scraped away as described in the ISO 4049 depth of cure test. The remaining 60 specimens were immersed in tetrahydrofuran for 48 hours in the dark. Maximum lengths of remaining hard RBC and their DOC values were compared using analysis of variance (ANOVA) and Tukey–Kramer post hoc multiple comparison tests (α = 0.05).

Results

Specimen thickness and DOC were always greater using the white Delrin® molds compared to metal molds (p < 0.001). Increase in mold diameter significantly increased specimen thickness and DOC when made in the metal molds and in the 6-mm diameter Delrin® molds (p < 0.01). Increasing the diameter of the Delrin® molds to 10-mm did not increase specimen thickness or DOC. Sectioning and staining of specimens revealed an internal, peripheral transition zone of porous RBC in the solvent-dissolved specimens only.

Conclusion

Mold material and internal diameter significantly influenced cured composite remnant thickness as well as depth of cure. The existence of an outer region of RBC that is hard, yet susceptible to solvent dissolution, requires further investigation.

Clinical relevance

The depth of cure results obtained from a 4-mm diameter metal mold may not represent the true potential for evaluating composite depth of cure. A universally acceptable mold material and diameter size need to be established if this type of testing is to be useful for evaluating the relative performance of a given type of LCU and RBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heintze SD, Rousson V (2012) Clinical effectiveness of direct class II restorations - a meta-analysis. J Adhes Dent 14(5):407–431. doi:10.3290/j.jad.a28390

    PubMed  Google Scholar 

  2. Lynch CD, Wilson NH (2013) Managing the phase-down of amalgam: part II. Implications for practising arrangements and lessons from Norway. Br Dent J 215(4):159–162. doi:10.1038/sj.bdj.2013.788

    Article  PubMed  Google Scholar 

  3. Federation FDIWD (2014) FDI policy statement on dental amalgam and the minamata convention on mercury: adopted by the FDI general assembly: 13 September 2014, new Delhi, India. Int Dent J 64(6):295–296. doi:10.1111/idj.12151

    Article  Google Scholar 

  4. Durner J, Obermaier J, Draenert M, Ilie N (2012) Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent Mater 28(11):1146–1153. doi:10.1016/j.dental.2012.08.006

    Article  PubMed  Google Scholar 

  5. Price R, Shortall A, Palin W (2014) Contemporary issues in light curing. Oper Dent 39(1):4–14. doi:10.2341/13-067-LIT

    Article  PubMed  Google Scholar 

  6. Ferracane JL, Mitchem JC, Condon JR, Todd R (1997) Wear and marginal breakdown of composites with various degrees of cure. J Dent Res 76(8):1508–1516

    Article  PubMed  Google Scholar 

  7. Shortall A, El-Mahy W, Stewardson D, Addison O, Palin W (2013) Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure. J Dent 41(5):455–463. doi:10.1016/j.jdent.2013.02.002

    Article  PubMed  Google Scholar 

  8. Xu X, Sandras DA, Burgess JO (2006) Shear bond strength with increasing light-guide distance from dentin. J Esthet Restor Dent 18(1):19–27 discussion 28

    Article  PubMed  Google Scholar 

  9. Vandewalle KS, Ferracane JL, Hilton TJ, Erickson RL, Sakaguchi RL (2004) Effect of energy density on properties and marginal integrity of posterior resin composite restorations. Dent Mater 20(1):96–106

    Article  PubMed  Google Scholar 

  10. Randolph LD, Palin WM, Bebelman S, Devaux J, Gallez B, Leloup G, Leprince JG (2014) Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution. Dent Mater 30(5):594–604. doi:10.1016/j.dental.2014.02.023

    Article  PubMed  Google Scholar 

  11. Ilie N, Durner J (2014) Polymerization kinetic calculations in dental composites: a method comparison analysis. Clin Oral Investig 18(6):1587–1596. doi:10.1007/s00784-013-1128-7

    Article  PubMed  Google Scholar 

  12. Czasch P, Ilie N (2013) In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig 17(1):227–235. doi:10.1007/s00784-012-0702-8

    Article  PubMed  Google Scholar 

  13. Marovic D, Taubock TT, Attin T, Panduric V, Tarle Z (2015) Monomer conversion and shrinkage force kinetics of low-viscosity bulk-fill resin composites. Acta Odontol Scand 73(6):474–480

    Article  PubMed  Google Scholar 

  14. Li X, Pongprueksa P, Van Meerbeek B, De Munck J (2015) Curing profile of bulk-fill resin-based composites. J Dent. doi:10.1016/j.jdent.2015.01.002

    Google Scholar 

  15. Li J, Li H, Fok AS, Watts DC (2009) Multiple correlations of material parameters of light-cured dental composites. Dent Mater 25(7):829–836. doi:10.1016/j.dental.2009.03.011

    Article  PubMed  Google Scholar 

  16. Price RB, Whalen JM, Price TB, Felix CM, Fahey J (2011) The effect of specimen temperature on the polymerization of a resin-composite. Dent Mater 27(10):983–989. doi:10.1016/j.dental.2011.06.004

    Article  PubMed  Google Scholar 

  17. Bouschlicher MR, Rueggeberg FA, Wilson BM (2004) Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent 29(6):698–704

    PubMed  Google Scholar 

  18. Erickson RL, Barkmeier WW (2014) Curing characteristics of a composite. Part 2: the effect of curing configuration on depth and distribution of cure. Dent Mater 30(6):134–145. doi:10.1016/j.dental.2014.02.013

    Article  Google Scholar 

  19. International Standard 4049 (2009) Polymer-based restorative materials (2009). ISO, Geneva

  20. Kleverlaan CJ, de Gee AJ (2004) Curing efficiency and heat generation of various resin composites cured with high-intensity halogen lights. Eur J Oral Sci 112(1):84–88

    Article  PubMed  Google Scholar 

  21. Flury S, Hayoz S, Peutzfeldt A, Husler J, Lussi A (2012) Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater 28(5):521–528. doi:10.1016/j.dental.2012.02.002

    Article  PubMed  Google Scholar 

  22. Fan PL, Stanford CM, Stanford WB, Leung R, Stanford JW (1984) Effects of backing reflectance and mold size on polymerization of photo-activated composite resin. J Dent Res 63(10):1245–1247

    Article  PubMed  Google Scholar 

  23. Harrington E, Wilson HJ (1993) Depth of cure of radiation-activated materials–effect of mould material and cavity size. J Dent 21(5):305–311

    Article  PubMed  Google Scholar 

  24. Ash MM, Nelson SJ, Ash MM (2003) Wheeler's dental anatomy, physiology, and occlusion, 8th edn. W.B. Saunders, Philadelphia

    Google Scholar 

  25. Vandewalle KS, Roberts HW, Rueggeberg FA (2008) Power distribution across the face of different light guides and its effect on composite surface microhardness. J Esthet Restor Dent 20(2):108–117 discussion 118. doi:10.1111/j.1708-8240.2008.00160.x

    Article  PubMed  Google Scholar 

  26. Price RB, Labrie D, Rueggeberg FA, Felix CM (2010) Irradiance differences in the violet (405 nm) and blue (460 nm) spectral ranges among dental light-curing units. J Esthet Restor Dent 22(6):363–377. doi:10.1111/j.1708-8240.2010.00368.x

    Article  PubMed  Google Scholar 

  27. Arikawa H, Kanie T, Fujii K, Takahashi H, Ban S (2008) Effect of inhomogeneity of light from light curing units on the surface hardness of composite resin. Dent Mater J 27(1):21–28

    Article  PubMed  Google Scholar 

  28. Michaud PL, Price RB, Labrie D, Rueggeberg FA, Sullivan B (2014) Localised irradiance distribution found in dental light curing units. J Dent 42(2):129–139. doi:10.1016/j.jdent.2013.11.014

    Article  PubMed  Google Scholar 

  29. Haenel T, Hausnerova B, Steinhaus J, Price RB, Sullivan B, Moeginger B (2015) Effect of the irradiance distribution from light curing units on the local micro-hardness of the surface of dental resins. Dent Mater 31(2):93–104. doi:10.1016/j.dental.2014.11.003

    Article  PubMed  Google Scholar 

  30. Shortall AC, Felix CJ, Watts DC (2015) Robust spectrometer-based methods for characterizing radiant exitance of dental LED light curing units. Dent Mater 31(4):339–350. doi:10.1016/j.dental.2015.02.012

    Article  PubMed  Google Scholar 

  31. de Magalhaes Filho TR, Weig Kde M, Werneck MM, da Costa Neto CA, da Costa MF (2015) Odontological light-emitting diode light-curing unit beam quality. J Biomed Opt 20(5):55005. doi:10.1117/1.JBO.20.5.055005

    Article  PubMed  Google Scholar 

  32. Driscoll WG, Vaughan W (1978) Handbook of optics. McGraw-Hill, New York

    Google Scholar 

  33. Jandt KD, Mills RW (2013) A brief history of LED photopolymerization. Dent Mater 29(6):605–617. doi:10.1016/j.dental.2013.02.003

    Article  PubMed  Google Scholar 

  34. Price RB, Labrie D, Rueggeberg FA, Sullivan B, Kostylev I, Fahey J (2014) Correlation between the beam profile from a curing light and the microhardness of four resins. Dent Mater 30(12):1345–1357. doi:10.1016/j.dental.2014.10.001

    Article  PubMed  Google Scholar 

  35. Pearson B (1991) Speciality chemicals: innovations in industrial synthesis and applications. Elsevier Science Pub. Co., London; New York

  36. Asmussen E, Peutzfeldt A (2003) Polymer structure of a light-cured resin composite in relation to distance from the surface. Eur J Oral Sci 111(3):277–279

    Article  PubMed  Google Scholar 

  37. Cole M, Rueggeberg FA, Looney SW, Oxford A, Hassan Z (2009) Variation comparison of depth-of-cure between scraping and chemical removal methods. J Dent Res:88: (Spec Iss A) Abstract 2436, 2009

  38. Price RB, Rueggeberg FA, Labrie D, Felix CM (2010) Irradiance uniformity and distribution from dental light curing units. J Esthet Restor Dent 22(2):86–101. doi:10.1111/j.1708-8240.2010.00318.x

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B Price.

Ethics declarations

Funding

This was an unfunded study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Price, R.B., Rueggeberg, F.A., Harlow, J. et al. Effect of mold type, diameter, and uncured composite removal method on depth of cure. Clin Oral Invest 20, 1699–1707 (2016). https://doi.org/10.1007/s00784-015-1672-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1672-4

Keywords

Navigation