Skip to main content

Advertisement

Log in

Correlative micro-Raman/EPMA analysis of the hydraulic calcium silicate cement interface with dentin

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aims to characterize the chemical interplay of hydraulic calcium silicate cements at dentin.

Materials and methods

Class I cavities were prepared in non-carious human third molars and filled with Biodentine (Septodont) or ProRoot MTA (Dentsply). After 1-day, 1-week, and 1-month Dulbecco’s phosphate-buffered saline (DPBS) storage, the specimens were cross-sectioned perpendicular to the cement-dentin interface. The interfaces were evaluated using micro-Raman (μRaman) spectroscopy and at a higher spatial resolution using field emission gun electron probe microanalysis (Feg-SEM/EPMA).

Results

μRaman spectroscopy revealed the formation of a transition zone at the interface of both Biodentine (Septodont) and ProRoot MTA (Dentsply) with dentin, having an average thickness of, respectively, 7.5 ± 4.2 and 6.2 ± 5.4 μm, which however was not statistically different. No difference in interfacial ultrastructure and chemistry was found using μRaman spectroscopy between 1 day, 1 week, and 1 month DPBS-stored specimens. The observation of a transition zone at the cement-dentin interfaces contrasts with the EPMA data that revealed a sharper transition from cement to dentin. Again, no difference in interfacial ultrastructure and chemistry was found for different storage periods, with the exception of one 1 month DPBS-stored specimen prepared using Biodentine (Septodont). More specifically, EPMA revealed a gap of about 10-μm wide in the latter specimen that was filled up with newly formed calcium phosphate depositions.

Conclusions

Up to 1 month, the interaction of hydraulic calcium silicate cements investigated did not reveal ultrastructural or chemical changes at unaffected dentin with the exception of a calcium phosphate gap-filling property.

Clinical relevance

Hydraulic calcium silicate cements were found to fill gaps by calcium phosphate deposition, however, without conducting chemical changes to the adjacent dentin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torabinejad M, Chivian N (1999) Clinical applications of mineral trioxide aggregate. J Endod 25:197–205

    Article  PubMed  Google Scholar 

  2. Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR (2005) The constitution of mineral trioxide aggregate. Dent Mater 21:297–303

    Article  PubMed  Google Scholar 

  3. Torabinejad M, White DJ (1995) Tooth filling material and use. US Patent Number 5,769,638

  4. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR (1995) Physical and chemical properties of a new root-end filling material. J Endod 21:349–353

    Article  PubMed  Google Scholar 

  5. Budig CG, Eleazer PD (2008) In vitro comparison of the setting of dry ProRoot MTA by moisture absorbed through the root. J Endod 34:712–714. doi:10.1016/j.joen.2008.03.004

    Article  PubMed  Google Scholar 

  6. Vallés M, Mercadé M, Duran-Sindreu F, Bourdelande JL, Roig M (2013) Influence of light and oxygen on the color stability of five calcium silicate-based materials. J Endod 39:525–528. doi:10.1016/j.joen.2012.12.021

    Article  PubMed  Google Scholar 

  7. Vallés M, Mercadé M, Duran-Sindreu F, Bourdelande JL, Roig M (2013) Color stability of white mineral trioxide aggregate. Clin Oral Investig 17:1155–1159. doi:10.1007/s00784-012-0794-1

    Article  PubMed  Google Scholar 

  8. Camilleri J (2014) Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J Endod 40:436–440. doi:10.1016/j.joen.2013.09.040

    Article  PubMed  Google Scholar 

  9. Marciano MA, Costa RM, Camilleri J, Mondelli RF, Guimarães BM, Duarte MA (2014) Assessment of color stability of white mineral trioxide aggregate angelus and bismuth oxide in contact with tooth structure. J Endod 40:1235–1240. doi:10.1016/j.joen.2014.01.044

    Article  PubMed  Google Scholar 

  10. Guimarães BM, Tartari T, Marciano MA, Vivan RR, Mondeli RF, Camilleri J, Duarte MA (2015) Color stability, radiopacity, and chemical characteristics of white mineral trioxide aggregate associated with 2 different vehicles in contact with blood. J Endod 41:947–952. doi:10.1016/j.joen.2015.02.008

    Article  PubMed  Google Scholar 

  11. Marciano MA, Duarte MA, Camilleri J (2015) Dental discoloration caused by bismuth oxide in MTA in the presence of sodium hypochlorite. Clin Oral Investig 30

  12. Boutsioukis C, Noula G, Lambrianidis T (2008) Ex vivo study of the efficiency of two techniques for the removal of mineral trioxide aggregate used as a root canal filling material. J Endod 34:1239–1242. doi:10.1016/j.joen.2008.07.018

    Article  PubMed  Google Scholar 

  13. Natale LC, Rodrigues MC, Xavier TA, Simoes A, de Souza DN, Braga RR (2015) Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping. Int Endod J 48:89–94. doi:10.1111/iej.12281

    Article  PubMed  Google Scholar 

  14. Grech L, Mallia B, Camilleri J (2013) Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 29:e20–e28. doi:10.1016/j.dental.2012.11.007

    Article  PubMed  Google Scholar 

  15. Camilleri J, Sorrentino F, Damidot D (2013) Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater 29:580–593. doi:10.1016/j.dental.2013.03.007

    Article  PubMed  Google Scholar 

  16. Raskin A, Eschrich G, Dejou J, About I (2012) In vitro microleakage of Biodentine as a dentin substitute compared to Fuji II LC in cervical lining restorations. J Adhes Dent 14:535–542. doi:10.3290/j.jad.a25690

    PubMed  Google Scholar 

  17. Koubi G, Colon P, Franquin JC, Hartmann A, Richard G, Faure MO, Lambert G (2013) Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth—a prospective study. Clin Oral Investig 17:243–249. doi:10.1007/s00784-012-0701-9

    Article  PubMed  Google Scholar 

  18. Li X, De Munck J, Pongprueksa P, Van Landuyt K, Van Meerbeek B (2014) Chemical interaction of calcium-silicate cements with demineralized dentin. J Dent Res 93(Spec Iss B):Abstr. No. 14

  19. Hashem D, Mannocci F, Patel S, Manoharan A, Brown JE, Watson TF, Banerjee A (2015) Clinical and radiographic assessment of the efficacy of calcium silicate indirect pulp capping: a randomized controlled clinical trial. J Dent Res 94:562–568. doi:10.1177/0022034515571415

    Article  PubMed  PubMed Central  Google Scholar 

  20. Reyes-Carmona JF, Felippe MS, Felippe WT (2009) Biomineralization ability and interaction of mineral trioxide aggregate and white Portland cement with dentin in a phosphate-containing fluid. J Endod 35:731–736. doi:10.1016/j.joen.2009.02.011

    Article  PubMed  Google Scholar 

  21. Han L, Okiji T (2011) Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J 44:1081–1087. doi:10.1111/j.1365-2591.2011.01924.x

    Article  PubMed  Google Scholar 

  22. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF (2012) Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res 91:454–459. doi:10.1177/0022034512443068

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Yao X (2010) Morphological/chemical imaging of demineralized dentin layer in its natural, wet state. Dent Mater 26:433–442. doi:10.1016/j.dental.2010.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guze K, Short M, Sonis S, Karimbux N, Chan J, Zeng H (2009) Parameters defining the potential applicability of Raman spectroscopy as a diagnostic tool for oral disease. J Biomed Opt 14:014016. doi:10.1117/1.3076195

    Article  PubMed  Google Scholar 

  25. Schulmerich MV, Cole JH, Kreider JM, Esmonde-White F, Dooley KA, Goldstein SA, Morris MD (2009) Transcutaneous Raman spectroscopy of murine bone in vivo. Appl Spectrosc 63:286–295

    Article  PubMed  PubMed Central  Google Scholar 

  26. Friel JJ, Lyman CE (2006) X-ray mapping in electron-beam instruments. Microsc Microanal 12:2–25

    Article  PubMed  Google Scholar 

  27. Hoyer I, Gaengler P, Bimberg R (1984) In vivo remineralization of human enamel and dental calculus formation. J Dent Res 63:1136–1139

    Article  PubMed  Google Scholar 

  28. Baena JR, Lendl B (2004) Raman spectroscopy in chemical bioanalysis. Curr Opin Chem Biol 8:534–539

    Article  PubMed  Google Scholar 

  29. Endo K, Hashimoto M, Haraguchi K, Ohno H (2010) Crystal growth by restorative filling materials. Eur J Oral Sci 118:489–493

    Article  PubMed  Google Scholar 

  30. Bezerra AC, Novaes RC, Faber J, Frencken JE, Leal SC (2012) Ion concentration adjacent to glass-ionomer restorations in primary molars. Dent Mater 28:e259–e263. doi:10.1016/j.dental.2012.08.014

    Article  PubMed  Google Scholar 

  31. Cosslett VE, Duncumb P (1956) Microanalysis by a flying-spot X-ray method. Nature 177:1172–1173

    Article  Google Scholar 

  32. Ayars EJ, Jahncke CL, Paesler MA, Hallen HD (2001) Fundamental differences between micro- and nano-Raman spectroscopy. J Microsc 202:142–147

    Article  PubMed  Google Scholar 

  33. De Munck J, Li X, Pongprueska P, Van Ende A, Van Meerbeek B (2013) Correlative micro-Raman/EPMA analysis of the calcium-silicate cement interface with dentin. J Dent Res 92(Spec Iss B):Abstr. No.191

  34. Grüner D, Fäldt J, Jansson K, Shen Z (2011) Argon ion beam polishing: a preparation technique for evaluating the interface of osseointegrated implants with high resolution. Int J Oral Maxillofac Implants 26:547–552

    PubMed  Google Scholar 

  35. Robson AJ, Grishin I, Young RJ, Sanchez AM, Kolosov OV, Hayne M (2013) High-accuracy analysis of nanoscale semiconductor layers using beam-exit ar-ion polishing and scanning probe microscopy. ACS Appl Mater Interfaces 5:3241–3245. doi:10.1021/am400270w

    Article  PubMed  Google Scholar 

  36. Gandolfi MG, Van Landuyt K, Taddei P, Modena E, Van Meerbeek B, Prati C (2010) Environmental scanning electron microscopy connected with energy dispersive X-ray analysis and Raman techniques to study ProRoot mineral trioxide aggregate and calcium silicate cements in wet conditions and in real time. J Endod 36:851–857. doi:10.1016/j.joen.2009.12.007

    Article  PubMed  Google Scholar 

  37. Prati C, Gandolfi MG (2015) Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater 31:351–370. doi:10.1016/j.dental.2015.01.004

    Article  PubMed  Google Scholar 

  38. Qi YP, Li N, Niu LN, Primus CM, Ling JQ, Pashley DH, Tay FR (2012) Remineralization of artificial dentinal caries lesions by biomimetically modified mineral trioxide aggregate. Acta Biomater 8:836–842. doi:10.1016/j.actbio.2011.10.033

    Article  PubMed  Google Scholar 

  39. Gandolfi MG, Taddei P, Siboni F, Modena E, De Stefano ED, Prati C (2011) Biomimetic remineralization of human dentin using promising innovative calcium-silicate hybrid “smart” materials. Dent Mater 27:1055–1069. doi:10.1016/j.dental.2011.07.007

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Van Meerbeek.

Ethics declarations

Funding

This study was funded by the Research Project grant G089315N awarded by the Research Foundation - Flanders (FWO). Drs. Xin Li’s research stay at KU Leuven is supported by the China Scholarship Council (File No.201206270126).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The human third molars employed in the study were gathered with informed consent as approved by the Commission for Medical Ethics of KU Leuven under the file number S57622.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Pongprueksa, P., Van Landuyt, K. et al. Correlative micro-Raman/EPMA analysis of the hydraulic calcium silicate cement interface with dentin. Clin Oral Invest 20, 1663–1673 (2016). https://doi.org/10.1007/s00784-015-1650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1650-x

Keywords

Navigation