Skip to main content

Advertisement

Log in

Evaluation of carbon nanotubes functionalized with sodium hyaluronate in the inflammatory processes for oral regenerative medicine applications

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The objectives of this study were to assess the effects of hyaluronic acid (HY), multi-walled carbon nanotubes (MWCNT), and MWCNT functionalized with HY (HY-MWCNT) on the resolution of neutrophilic inflammation in the pleural cavity of LPS-challenged mice and to assess the influence of these materials in the inflammatory process of bone repair of tooth sockets of rats.

Materials and methods

C57Bl/6 mice were intra-pleurally injected with HY, MWCNT, HY-MWCNT, phosphate-buffered saline (PBS), or LPS. The animals were euthanized after 8 and 24 h, and cells were harvested for total and differential cell counting. The tooth sockets of Wistar rats were filled with HY, MWCNT, HY-MWCNT, or blood clot (control). After 1, 3, and 7 days, histological and morphometric analyses evaluated the number of cell nuclei and blood vessels, and bone trabeculae formation in the sockets. Myeloperoxidase (MPO) activity quantified neutrophil accumulation in the sockets.

Results

HY, MWCNT, and HY-MWCNT increased neutrophilic recruitment at 8 h and reduced the inflammatory process at 24 h in the pleural cavity. Histological and morphometric analyses and MPO activity showed no significant differences in the recruitment of inflammatory cells in the tooth sockets. HY increased the number of blood vessels, and HY and HY-MWCNT increased bone trabeculae formation at 7 days of tooth extraction.

Conclusions

HY, MWCNT, and HY-MWCNT resolved the neutrophilic inflammation in the pleural cavity of the mice. However, these materials did not modulate the inflammatory process in the early stages of bone repair of the tooth sockets, thereby excluding this action as a possible mechanism by which these biomaterials accelerate bone repair.

Clinical relevance

HY-MWCNT is capable of accelerating bone repair/regeneration without affecting the inflammatory phase during the bone healing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee HH, Sang Shin U, Lee JH, Kim HW (2011) Biomedical nanocomposites of poly(lactic acid) and calcium phosphate hybridized with modified carbon nanotubes for hard tissue implants. J Biomed Mater Res B Appl Biomater 98:246–254

    Article  PubMed  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  3. Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP (2008) Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules 9:505–509

    Article  PubMed  Google Scholar 

  4. Bhattacharya M, Wutticharoenmongkol-Thitiwongsawet P, Hamamoto DT, Lee D, Cui T, Prasad HS, Ahmad M (2011) Bone formation on carbon nanotube composite. J Biomed Mater Res A 96:75–82

    Article  PubMed  Google Scholar 

  5. Liao CZ, Li K, Wong HM, Tong WY, Yeung KW, Tjong SC (2012) Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mat Sci Eng C 33:1380–1388

    Article  Google Scholar 

  6. Cheng Q, Rutledge K, Jabbarzadeh E (2013) Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Ann Biomed Eng 41:904–916

    Article  PubMed  Google Scholar 

  7. Martins-Júnior PA, Alcântara CE, Resende RR, Ferreira AJ (2013) Carbon nanotubes: directions and perspectives in oral regenerative medicine. J Dent Res 92:575–583

    Article  PubMed  Google Scholar 

  8. Zhao C, Tan A, Pastorin G, Ho HK (2013) Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv 31:654–668

    Article  PubMed  Google Scholar 

  9. Wisniewski HG, Hua JC, Poppers DM, Naime D, Vilcek J, Cronstein BN (1996) TNF/IL-1-inducible protein TSG-6 potentiates plasmin inhibition by inter-a-inhibitor and exerts a strong anti-inflammatory effect in vivo. J Immunol 156:1609–1615

    PubMed  Google Scholar 

  10. Kobayashi H, Terao T (1997) Hyaluronic acid-specific regulation of cytokines by human uterine fibroblasts. Am J Physiol 273:C1151–1159

    PubMed  Google Scholar 

  11. Ryman-Rasmussen JP, Tewskbury E, Moss OR, Cesta MF, Wong BA, Bonner JC (2009) Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in a murine model of allergic asthma. Am J Respir Cell Mol Biol 40:349–358

    Article  PubMed  Google Scholar 

  12. Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, Bonner JC (2009) Inhaled carbon nanotubes reach the sub-pleural tissue in mice. Nat Nanotech 4:747–751

    Article  Google Scholar 

  13. Mendes RM, Silva GA, Caliari MV, Silva EE, Ladeira LO, Ferreira AJ (2010) Effects of single wall carbon nanotubes and its functionalization with sodium hyaluronate on bone repair. Life Sci 87:215–222

    Article  PubMed  Google Scholar 

  14. Sá MA, Andrade VB, Mendes RM, Caliari MV, Ladeira LO, Silva EE, Silva GA, Corrêa-Júnior JD, Ferreira AJ (2013) Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets. Oral Dis 19:484–493

    Article  PubMed  Google Scholar 

  15. Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horowitz MC (1995) The expression of cytokine activity by fracture callus. J Bone Miner Res 10:1272–1281

    Article  PubMed  Google Scholar 

  16. Mountziaris PM, Mikos AG (2008) Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev 14:179–186

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schmidt-Bleek K, Schell H, Schulz N, Hoff P, Perka C, Buttgereit F, Volk HD, Lienau J, Duda GN (2012) Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res 347:567–573

    Article  PubMed  Google Scholar 

  18. Fisher JP, Lalani Z, Bossano CM, Brey EM, Demian N, Johnston CM, Dean D, Jansen JA, Wong ME, Mikos AG (2004) Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model. J Biomed Mater Res A 68:428–438

    Article  PubMed  Google Scholar 

  19. Trigueiro JPC, Silva GG, Lavall RL, Furtado CA, Oliveira S, Ferlauto AS, Lacerda RG, Ladeira LO, Liu JW, Frost RL, George GA (2007) Purity evaluation of carbon nanotube materials by thermogravimetric, TEM, and SEM methods. J Nanosci Nanotechnol 7:3477–3486

    Article  PubMed  Google Scholar 

  20. Sousa LP, Lopes F, Silva DM, Tavares LP, Vieira AT, Rezende BM, Carmo AF, Russo RC, Garcia CC, Bonjardim CA, Alessandri AL, Rossi AG, Pinho V, Teixeira MM (2010) PDE4 inhibition drives resolution of neutrophilic inflammation by inducing apoptosis in a PKA-PI3K/Akt-dependent and NF-kappaB-independent manner. J Leukoc Biol 87:895–904

    Article  PubMed  Google Scholar 

  21. Caliari MV (1997) Princípios Básicos de Morfometria Digital: KS300 para iniciantes. UFMG, Belo Horizonte

    Google Scholar 

  22. Maltos KL, Menezes GB, Caliari MV, Rocha OA, Santos JM, Alves DL, Duarte ID, Francischi JN (2004) Vascular and cellular responses to pro-inflammatory stimuli in rat dental pulp. Arch Oral Biol 49:443–450

    Article  PubMed  Google Scholar 

  23. Souza DG, Cara DC, Cassali GD, Coutinho SF, Silveira MR, Andrade SP, Poole SP, Teixeira MM (2000) Effects of the PAF receptor antagonist UK74505 on local and remote reperfusion injuries following ischaemia of the superior mesenteric artery in the rat. Br J Pharmacol 131:1800–1808

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barcelos LS, Talvani A, Teixeira AS, Vieira LQ, Cassali GD, Andrade SP, Teixeira MM (2005) Impaired inflammatory angiogenesis, but not leukocyte influx, in mice lacking TNFR1. J Leukoc Biol 78:352–358

    Article  PubMed  Google Scholar 

  25. Queiroz-Junior CM, Pacheco CM, Fonseca AH, Klein A, Caliari MV, de Francischi JN (2009) Myeloperoxidase content is a marker of systemic inflammation in a chronic condition: the example given by the periodontal disease in rats. Mediators Inflamm 2009:760837

    Article  PubMed  PubMed Central  Google Scholar 

  26. Petrey AC, de la Motte CA (2014) Hyaluronan, a crucial regulator of inflammation. Front Immunol 5:101

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu L, Thompson AY, Heidaran MA, Poser JW, Spiro RC (1999) An osteoconductive collagen/hyaluronate matrix for bone regeneration. Biomaterials 20:1097–1108

    Article  PubMed  Google Scholar 

  28. Dechert TA, Ducale AE, Ward SI, Yager DR (2006) Hyaluronan in human acute and chronic dermal wounds. Wound Repair Regen 14:252–258

    Article  PubMed  Google Scholar 

  29. Mendes RM, Silva GA, Lima MF, Calliari MV, Almeida AP, Alves JB, Ferreira AJ (2008) Sodium hyaluronate accelerates the healing process in tooth sockets of rats. Arch Oral Biol 53:1155–1162

    Article  PubMed  Google Scholar 

  30. Stenson WF (2010) Hyaluronic acid and intestinal inflammation. Curr Opin Gastroenterol 26:85–87

    Article  PubMed  Google Scholar 

  31. Jain S, Thakare VS, Das M, Godugu C, Jain AK, Mathur R, Chuttani K, Mishra AK (2011) Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol 24:2028–2039

    Article  PubMed  Google Scholar 

  32. Usui Y, Aoki K, Narita N, Murakami N, Nakamura I, Nakamura K, Ishigaki N, Yamazaki H, Horiuchi H, Kato H, Taruta S, Kim YA, Endo M, Saito N (2008) Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small 4:240–246

    Article  PubMed  Google Scholar 

  33. Lin C, Wang Y, Lai Y, Yang W, Jiao F, Zhang H, Ye S, Zhang Q (2011) Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering. Colloids Surf B: Biointerfaces 83:367–375

    Article  PubMed  Google Scholar 

  34. Ogihara N, Usui Y, Aoki K, Shimizu M, Narita N, Hara K, Nakamura K, Ishigaki N, Takanashi S, Okamoto M, Kato H, Haniu H, Ogiwara N, Nakayama N, Taruta S, Saito N (2012) Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes. Nanomedicine (Lond) 7:981–993

    Article  Google Scholar 

  35. Giavaresi G, Torricelli P, Fornasari PM, Giardino R, Barbucci R, Leone G (2005) Blood vessel formation after soft-tissue implantation of hyaluronan-based hydrogel supplemented with copper ions. Biomaterials 26:3001–3008

    Article  PubMed  Google Scholar 

  36. Carollo M, Hogaboam CM, Kunkel SL, Delaney S, Christie MI, Perretti M (2001) Analysis of the temporal expression of chemokines and chemokine receptors during experimental granulomatous inflammation: role and expression of MIP-1alpha and MCP-1. Br J Pharmacol 134:1166–1179

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mullane KM, Kraemer R, Smith B (1985) Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J Pharmacol Methods 14:157–167

    Article  PubMed  Google Scholar 

  38. Wei PF, Ho KY, Ho YP, Wu YM, Yang YH, Tsai CC (2004) The investigation of glutathione peroxidase, lactoferrin, myeloperoxidase and interleukin-1β in gingival crevicular fluid: implications for oxidative stress in human periodontal diseases. J Periodontal Res 39:287–293

    Article  PubMed  Google Scholar 

  39. David-Raoudi M, Tranchepain F, Deschrevel B, Vincent JC, Bogdanowicz P, Boumediene K, Pujol JP (2008) Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen 16:274–287

    Article  PubMed  Google Scholar 

  40. Pasquinelli G, Orrico C, Foroni L, Bonafè F, Carboni M, Guarnieri C, Raimondo S, Penna C, Geuna S, Pagliaro P, Freyrie A, Stella A, Caldarera CM, Muscari C (2008) Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair. J Anat 213:520–530

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhao B, Hu H, Mandal SK, Haddon RC (2005) A bone mimic based on the self assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem Mat 17:3235–3241

    Article  Google Scholar 

  42. Silva EE, Colleta HMH, Ferlauto AS, Moreira RL, Resende RR, Oliveira S, Kitten GT, Lacerda RG, Ladeira LO (2009) Nanostructured 3-d collagen/nanotube biocomposites for future bone regeneration scaffolds. Nano Res 2:462–473

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson José Ferreira.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins-Júnior, P.A., Sá, M.A., Reis, A.C. et al. Evaluation of carbon nanotubes functionalized with sodium hyaluronate in the inflammatory processes for oral regenerative medicine applications. Clin Oral Invest 20, 1607–1616 (2016). https://doi.org/10.1007/s00784-015-1639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1639-5

Keywords

Navigation