Skip to main content

Advertisement

Log in

Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

To evaluate in long-term periods the destruction of periodontal tissues and bacterial colonization induced by oral gavage with periodontopathogens or ligature experimental periodontal disease models.

Material and methods

Forty-eight C57BL/6 J mice were divided into four groups: group C: negative control; group L: ligature; group G-Pg: oral gavage with Porphyromonas gingivalis; and group G-PgFn: oral gavage with Porphyromonas gingivalis associated with Fusobacterium nucleatum. Mice were infected by oral gavage five times in 2-day intervals. After 45 and 60 days, animals were sacrificed and the immune-inflammatory response in the periodontal tissue was assessed by stereometric analysis. The alveolar bone loss was evaluated by live microcomputed tomography and histometric analysis. qPCR was used to confirm the bacterial colonization in all the groups. Data were analyzed using the Kruskal-Wallis, Wilcoxon, and ANOVA tests, at 5 % of significance level.

Results

Ligature model induced inflammation and bone resorption characterized by increased number of inflammatory cells and decreased number of fibroblasts, followed by advanced alveolar bone loss at 45 and 60 days (p < 0.05). Bacterial colonization in groups G-Pg and G-PgFn was confirmed by qPCR but inflammation and bone resorption were not observed (p < 0.05).

Conclusions

The ligature model but not the oral gavage models were effective to induce inflammation and bone loss in long-term periods. Pg colonization was observed in all models of experimental periodontal disease induction, independent of tissue alterations. These mice models of periodontitis validates, compliments, and enhances published PD models that utilize ligature or oral gavage and supports the importance of a successful colonization of a susceptible host, a bacterial invasion into vulnerable tissue, and host-bacterial interactions that lead to tissue destruction.

Clinical relevance

The ligature model was an effective approach to induce inflammation and bone loss similar to human periodontitis, but the oral gavage models were not efficient in inducing periodontal inflammation and tissue destruction in the conditions studied. Ligature models can provide a basis for future interventional studies that contribute to the understanding of the disease pathogenesis and the complex host response to microbial challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eke PI, Genco RJ (2007) CDC periodontal disease surveillance project: background, objectives, and progress report. J Periodontol 78:1366–1371

    Article  PubMed  Google Scholar 

  2. Albandar JM, Rams TE (2002) Global epidemiology of periodontal diseases: an overview. Periodontol 2000(29):7–10

    Article  Google Scholar 

  3. Kornman KS, Crane A, Wang HY, di Giovine FS, Newman MG, Pirk FW, Wilson TG Jr, Higginbottom FL, Duff GW (1997) The interleukin-1 genotype as a severity factor in adult periodontal disease. J Clin Periodontol 24:72–77

    Article  PubMed  Google Scholar 

  4. Page RC, Offenbacher S, Schroeder HE, Seymour GJ, Kornman KS (1997) Advances in the pathogenesis of periodontitis: summary of developments, clinical implications and future directions. Periodontol 2000 14:216–248

    Article  PubMed  Google Scholar 

  5. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732

    Article  PubMed  PubMed Central  Google Scholar 

  6. Garlet GP, Cardoso CR, Silva TA, Ferreira BR, Avila-Campos MJ, Cunha FQ, Silva JS (2006) Cytokine pattern determines the progression of experimental periodontal disease induced by Actinobacillus actinomycetemcomitans through the modulation of MMPs, RANKL, and their physiological inhibitors. Oral Microbiol Immunol 21:12–20

    Article  PubMed  Google Scholar 

  7. Holt SC, Ebersole JL (2005) Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000(38):72–122

    Article  Google Scholar 

  8. Kesavalu L, Sathishkumar S, Bakthavatchalu V, Matthews C, Dawson D, Steffen M, Ebersole JL (2007) Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infect Immun 75:1704–1712

    Article  PubMed  PubMed Central  Google Scholar 

  9. Polak D, Wilensky A, Shapira L, Halabi A, Goldstein D, Weiss EI, Houri-Haddad Y (2009) Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatum infection: bone loss and host response. J Clin Periodontol 36:406–410

    Article  PubMed  Google Scholar 

  10. Holt SC, Ebersole J, Felton J, Brunsvold M, Kornman KS (1988) Implantation of Bacteroides gingivalis in nonhuman primates initiates progression of periodontitis. Science 239:55–57

    Article  PubMed  Google Scholar 

  11. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144

    Article  PubMed  Google Scholar 

  12. Craig RG, Yip JK, So MK, Boylan RJ, Socransky SS, Haffajee AD (2003) Relationship of destructive periodontal disease to the acute-phase response. J Periodontol 74:1007–1016

    Article  PubMed  Google Scholar 

  13. Haffajee AD, Socransky SS (2005) Microbiology of periodontal diseases: introduction. Periodontol 2000(38):9–12

    Article  Google Scholar 

  14. Socransky SS, Haffajee AD (2005) Periodontal microbial ecology. Periodontol 2000(38):135–187

    Article  Google Scholar 

  15. Zubery Y, Dunstan CR, Story BM, Kesavalu L, Ebersole JL, Holt SC, Boyce BF (1998) Bone resorption caused by three periodontal pathogens in vivo in mice is mediated in part by prostaglandin. Infect Immun 66:4158–4162

    PubMed  PubMed Central  Google Scholar 

  16. Baker PJ, Evans RT, Roopenian DC (1994) Oral infection with Porphyromonas gingivalis and induced alveolar bone loss in immunocompetent and severe combined immunodeficient mice. Arch Oral Biol 39:1035–1040

    Article  PubMed  Google Scholar 

  17. de Molon RS, de Avila ED, Boas Nogueira AV, Chaves de Souza JA, Avila-Campos MJ, de Andrade CR, Cirelli JA (2014) Evaluation of the host response in various models of induced periodontal disease in mice. J Periodontol 85:465–477

    Article  PubMed  Google Scholar 

  18. de Molon RS, de Avila ED, Cirelli JA (2013) Host responses induced by different animal models of periodontal disease: a literature review. J Investig Clin Dent 4:211–218

    Article  PubMed  Google Scholar 

  19. Graves DT, Fine D, Teng YT, Van Dyke TE, Hajishengallis G (2008) The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. J Clin Periodontol 35:89–105

    Article  PubMed  PubMed Central  Google Scholar 

  20. Graves DT, Kang J, Andriankaja O, Wada K, Rossa C Jr (2012) Animal models to study host-bacteria interactions involved in periodontitis. Front Oral Biol 15:117–132

    Article  PubMed  Google Scholar 

  21. Saadi-Thiers K, Huck O, Simonis P, Tilly P, Fabre JE, Tenenbaum H, Davideau JL (2013) Periodontal and systemic responses in various mice models of experimental periodontitis: respective roles of inflammation duration and porphyromonas gingivalis infection. J Periodontol 84:396–406

    Article  PubMed  Google Scholar 

  22. Klausen B (1991) Microbiological and immunological aspects of experimental periodontal disease in rats: a review article. J Periodontol 62:59–73

    Article  PubMed  Google Scholar 

  23. Bezerra MM, Brito GA, Ribeiro RA, Rocha FA (2002) Low-dose doxycycline prevents inflammatory bone resorption in rats. Braz J Med Biol Res 35:613–616

    Article  PubMed  Google Scholar 

  24. Duarte PM, Tezolin KR, Figueiredo LC, Feres M, Bastos MF (2010) Microbial profile of ligature-induced periodontitis in rats. Arch Oral Biol 55:142–147

    Article  PubMed  Google Scholar 

  25. Rovin S, Costich ER, Gordon HA (1966) The influence of bacteria and irritation in the initiation of periodontal disease in germfree and conventional rats. J Periodontal Res 1:193–204

    Article  PubMed  Google Scholar 

  26. Amar S, Wu SC, Madan M (2009) Is Porphyromonas gingivalis cell invasion required for atherogenesis? Pharmacotherapeutic implications. J Immunol 182:1584–1592

    Article  PubMed  Google Scholar 

  27. Barros SP, Arce RM, Galloway P, Lawter R, Offenbacher S (2011) Therapeutic effect of a topical CCR2 antagonist on induced alveolar bone loss in mice. J Periodontal Res 46:246–251

    Article  PubMed  Google Scholar 

  28. Cantley MD, Bartold PM, Marino V, Reid RC, Fairlie DP, Wyszynski RN, Zilm PS, Haynes DR (2009) The use of live-animal micro-computed tomography to determine the effect of a novel phospholipase A2 inhibitor on alveolar bone loss in an in vivo mouse model of periodontitis. J Periodontal Res 44:317–322

    Article  PubMed  Google Scholar 

  29. Glowacki AJ, Yoshizawa S, Jhunjhunwala S, Vieira AE, Garlet GP, Sfeir C, Little SR (2013) Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proc Natl Acad Sci U S A 110:18525–18530

    Article  PubMed  PubMed Central  Google Scholar 

  30. Feuille F, Ebersole JL, Kesavalu L, Stepfen MJ, Holt SC (1996) Mixed infection with Porphyromonas gingivalis and Fusobacterium nucleatum in a murine lesion model: potential synergistic effects on virulence. Infect Immun 64:2094–2100

    PubMed  PubMed Central  Google Scholar 

  31. Nahid MA, Rivera M, Lucas A, Chan EK, Kesavalu L (2011) Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE-/- mice during experimental periodontal disease. Infect Immun 79:1597–1605

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li CH, Amar S (2007) Morphometric, histomorphometric, and microcomputed tomographic analysis of periodontal inflammatory lesions in a murine model. J Periodontol 78:1120–1128

    Article  PubMed  Google Scholar 

  33. Meulman T, Peruzzo DC, Stipp RN, Goncalves PF, Sallum EA, Casati MZ, Goncalves RB, Nociti FH Jr (2011) Impact of Porphyromonas gingivalis inoculation on ligature-induced alveolar bone loss. A pilot study in rats. J Periodontal Res 46:629–636

    PubMed  Google Scholar 

  34. Wilensky A, Gabet Y, Yumoto H, Houri-Haddad Y, Shapira L (2005) Three-dimensional quantification of alveolar bone loss in Porphyromonas gingivalis-infected mice using micro-computed tomography. J Periodontol 76:1282–1286

    Article  PubMed  Google Scholar 

  35. Wilensky A, Polak D, Awawdi S, Halabi A, Shapira L, Houri-Haddad Y (2009) Strain-dependent activation of the mouse immune response is correlated with Porphyromonas gingivalis-induced experimental periodontitis. J Clin Periodontol 36:915–921

    Article  PubMed  Google Scholar 

  36. Kilkenny C, Browne WJ, Cuthi I, Emerson M, Altman DG (2012) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Vet Clin Pathol 41:27–31

    Article  PubMed  Google Scholar 

  37. Nogueira AV, de Souza JA, de Molon RS, Pereira Eda S, de Aquino SG, Giannobile WV, Cirelli JA (2014) HMGB1 localization during experimental periodontitis. Mediat Inflamm 2014, 816320

    Google Scholar 

  38. Liu R, Bal HS, Desta T, Krothapalli N, Alyassi M, Luan Q, Graves DT (2006) Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. J Dent Res 85:510–514

    Article  PubMed  PubMed Central  Google Scholar 

  39. Odze RD, Marcial MA, Antonioli D (1996) Gastric fundic gland polyps: a morphological study including mucin histochemistry, stereometry, and MIB-1 immunohistochemistry. Hum Pathol 27:896–903

    Article  PubMed  Google Scholar 

  40. Duarte PM, Goncalves P, Casati MZ, de Toledo S, Sallum EA, Nociti FH Jr (2006) Estrogen and alendronate therapies may prevent the influence of estrogen deficiency on the tooth-supporting alveolar bone: a histometric study in rats. J Periodontal Res 41:541–546

    Article  PubMed  Google Scholar 

  41. de Molon RS, Cheong S, Bezouglaia O, Dry SM, Pirih F, Cirelli JA, Aghaloo TL, Tetradis S (2014) Spontaneous osteonecrosis of the jaws in the maxilla of mice on antiresorptive treatment: a novel ONJ mouse model. Bone 68:11–19

    Article  PubMed  PubMed Central  Google Scholar 

  42. de Molon RS, Shimamoto H, Bezouglaia O, Pirih FQ, Dry SM, Kostenuik P, Boyce RW, Dwyer D, Aghaloo TL, Tetradis S (2015) OPG-Fc but not zoledronic acid discontinuation reverses Osteonecrosis of the Jaws (ONJ) in Mice. J Bone Miner Res 30(9):1627–1640. doi:10.1002/jbmr.2490

  43. Teixeira SR, Mattarazo F, Feres M, Figueiredo LC, de Faveri M, Simionato MR, Mayer MP (2009) Quantification of porphyromonas gingivalis and fimA genotypes in smoker chronic periodontitis. J Clin Periodontol 36:482–487

    Article  PubMed  Google Scholar 

  44. Amano A, Nakagawa I, Kataoka K, Morisaki I, Hamada S (1999) Distribution of Porphyromonas gingivalis strains with fimA genotypes in periodontitis patients. J Clin Microbiol 37:1426–1430

    PubMed  PubMed Central  Google Scholar 

  45. Liu YF, Wu LA, Wang J, Wen LY, Wang XJ (2010) Micro-computerized tomography analysis of alveolar bone loss in ligature- and nicotine-induced experimental periodontitis in rats. J Periodontal Res 45:714–719

    Article  PubMed  Google Scholar 

  46. Genco CA, Van Dyke T, Amar S (1998) Animal models for porphyromonas gingivalis-mediated periodontal disease. Trends Microbiol 6:444–449

    Article  PubMed  Google Scholar 

  47. Garcia de Aquino S, Manzolli Leite FR, Stach-Machado DR, Francisco da Silva JA, Spolidorio LC, Rossa C Jr (2009) Signaling pathways associated with the expression of inflammatory mediators activated during the course of two models of experimental periodontitis. Life Sci 84:745–754

    Article  PubMed  Google Scholar 

  48. Yuan H, Gupte R, Zelkha S, Amar S (2011) Receptor activator of nuclear factor kappa B ligand antagonists inhibit tissue inflammation and bone loss in experimental periodontitis. J Clin Periodontol 38:1029–1036

    Article  PubMed  Google Scholar 

  49. Karimbux NY, Ramamurthy NS, Golub LM, Nishimura I (1998) The expression of collagen I and XII mRNAs in porphyromonas gingivalis-induced periodontitis in rats: the effect of doxycycline and chemically modified tetracycline. J Periodontol 69:34–40

    Article  PubMed  Google Scholar 

  50. de Aquino SG, Guimaraes MR, Stach-Machado DR, da Silva JA, Spolidorio LC, Rossa C Jr (2009) Differential regulation of MMP-13 expression in two models of experimentally induced periodontal disease in rats. Arch Oral Biol 54:609–617

    Article  PubMed  Google Scholar 

  51. Kimura S, Nagai A, Onitsuka T, Koga T, Fujiwara T, Kaya H, Hamada S (2000) Induction of experimental periodontitis in mice with porphyromonas gingivalis-adhered ligatures. J Periodontol 71:1167–1173

    Article  PubMed  Google Scholar 

  52. Baker PJ, Dixon M, Roopenian DC (2000) Genetic control of susceptibility to porphyromonas gingivalis-induced alveolar bone loss in mice. Infect Immun 68:5864–5868

    Article  PubMed  PubMed Central  Google Scholar 

  53. de Aquino SG, Abdollahi-Roodsaz S, Koenders MI, van de Loo FA, Pruijn GJ, Marijnissen RJ, Walgreen B, Helsen MM, van den Bersselaar LA, de Molon RS, Avila Campos MJ, Cunha FQ, Cirelli JA, van den Berg WB (2014) Periodontal pathogens directly promote autoimmune experimental arthritis by inducing a TLR2- and IL-1-driven Th17 response. J Immunol 192:4103–4111

    Article  PubMed  Google Scholar 

  54. Polak D, Naddaf R, Shapira L, Weiss EI, Houri-Haddad Y (2013) Protective potential of non-dialyzable material fraction of cranberry juice on the virulence of P. gingivalis and F. nucleatum mixed infection. J Periodontol 84:1019–1025

    Article  PubMed  Google Scholar 

  55. Polak D, Shapira L, Weiss EI, Houri-Haddad Y (2012) The role of coaggregation between porphyromonas gingivalis and fusobacterium nucleatum on the host response to mixed infection. J Clin Periodontol 39:617–625

    Article  PubMed  Google Scholar 

  56. McIntosh ML, Hajishengallis G (2012) Inhibition of porphyromonas gingivalis-induced periodontal bone loss by CXCR4 antagonist treatment. Mol Oral Microbiol 27:449–457

    Article  PubMed  PubMed Central  Google Scholar 

  57. Polak D, Shapira L, Weiss EI, Houri-Haddad Y (2013) Virulence mechanism of bacteria in mixed infection: attenuation of cytokine levels and evasion of polymorphonuclear leukocyte phagocytosis. J Periodontol 84:1463–1468

    Article  PubMed  Google Scholar 

  58. Polak D, Wilensky A, Shapira L, Weiss EI, Houri-Haddad Y (2010) Vaccination of mice with porphyromonas gingivalis or fusobacterium nucleatum modulates the inflammatory response, but fails to prevent experimental periodontitis. J Clin Periodontol 37:812–817

    Article  PubMed  Google Scholar 

  59. Li H, Yang H, Ding Y, Aprecio R, Zhang W, Wang Q, Li Y (2013) Experimental periodontitis induced by porphyromonas gingivalis does not alter the onset or severity of diabetes in mice. J Periodontal Res 48:582–590

    Article  PubMed  Google Scholar 

  60. Nakano K, Kuboniwa M, Nakagawa I, Yamamura T, Nomura R, Okahashi N, Ooshima T, Amano A (2004) Comparison of inflammatory changes caused by porphyromonas gingivalis with distinct fimA genotypes in a mouse abscess model. Oral Microbiol Immunol 19:205–209

    Article  PubMed  Google Scholar 

  61. Kesavalu L, Vasudevan B, Raghu B, Browning E, Dawson D, Novak JM, Correll MC, Steffen MJ, Bhattacharya A, Fernandes G, Ebersole JL (2006) Omega-3 fatty acid effect on alveolar bone loss in rats. J Dent Res 85:648–652

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yoshida-Minami I, Suzuki A, Kawabata K, Okamoto A, Nishihara Y, Minami T, Nagashima S, Morisaki I, Ooshima T (1997) Alveolar bone loss in rats infected with a strain of prevotella intermedia and fusobacterium nucleatum isolated from a child with prepubertal periodontitis. J Periodontol 68:12–17

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by fellowship from the State of Sao Paulo Research Foundation (FAPESP) # 12/11860-8. The authors are extremely grateful to Dr. Andressa Vilas Boas Nogueira, Ph.D (Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP)) for her help during the experiments; Prof. Dr. Marcia P. A. Mayer (Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo) for her suggestions in the microbiological analysis, and Leandro Alves dos Santos for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafael Scaf de Molon or Joni Augusto Cirelli.

Ethics declarations

Author’s contribution

All authors participated in the design, execution, and analyses of the studies. de Molon, RS drafted the manuscript. All authors made critically revisions and approved the final version.

Ethical approval

The present study was approved by the Ethical Committee on Animal Experimentation of the School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP) (#13/2012).

Conflict of interest

The authors declare that there are no conflicts of interest in this study.

Additional information

Rafael Scaf de Molon and Vinicius Ibiapina Mascarenhas contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Molon, R.S., Mascarenhas, V.I., de Avila, E.D. et al. Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clin Oral Invest 20, 1203–1216 (2016). https://doi.org/10.1007/s00784-015-1607-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1607-0

Keywords

Navigation