Advertisement

Clinical Oral Investigations

, Volume 20, Issue 6, pp 1271–1278 | Cite as

Multifractal spectrum and lacunarity as measures of complexity of osseointegration

  • Daniel de Souza Santos
  • Leonardo Cavalcanti Bezerra dos Santos
  • Alessandra de Albuquerque Tavares Carvalho
  • Jair Carneiro Leão
  • Claudio Delrieux
  • Tatijana Stosic
  • Borko StosicEmail author
Original Article
  • 242 Downloads

Abstract

Objectives

The goal of this study is to contribute to a better quantitative description of the early stages of osseointegration, by application of fractal, multifractal, and lacunarity analysis.

Materials and methods

Fractal, multifractal, and lacunarity analysis are performed on scanning electron microscopy (SEM) images of titanium implants that were first subjected to different treatment combinations of i) sand blasting, ii) acid etching, and iii) exposition to calcium phosphate, and were then submersed in a simulated body fluid (SBF) for 30 days. All the three numerical techniques are applied to the implant SEM images before and after SBF immersion, in order to provide a comprehensive set of common quantitative descriptors.

Results

It is found that implants subjected to different physicochemical treatments before submersion in SBF exhibit a rather similar level of complexity, while the great variety of crystal forms after SBF submersion reveals rather different quantitative measures (reflecting complexity), for different treatments. In particular, it is found that acid treatment, in most combinations with the other considered treatments, leads to a higher fractal dimension (more uniform distribution of crystals), lower lacunarity (lesser variation in gap sizes), and narrowing of the multifractal spectrum (smaller fluctuations on different scales).

Conclusion

The current quantitative description has shown the capacity to capture the main features of complex images of implant surfaces, for several different treatments. Such quantitative description should provide a fundamental tool for future large scale systematic studies, considering the large variety of possible implant treatments and their combinations.

Clinical relevance

Quantitative description of early stages of osseointegration on titanium implants with different treatments should help develop a better understanding of this phenomenon, in general, and provide basis for further systematic experimental studies. Clinical practice should benefit from such studies in the long term, by more ready access to implants of higher quality.

Keywords

Dental implants Osseointegration Fractal dimension Multifractal spectrum Lacunarity 

Notes

Acknowledgments

This work is supported by research grants from CNPq, CAPES and FACEPE (Brazilian research agencies), and MINCYT (Argentinean Ministry of Science, Technology and Productive Innovation).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Layrolle P, Amouriq Y, Le Gunnec L, Soueidan A (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854CrossRefPubMedGoogle Scholar
  2. 2.
    Bagno A, Di Bello C (2004) Surface treatments and roughness properties of Ti-based biomaterials. J Mater Sci Mater Med 15:935–949CrossRefPubMedGoogle Scholar
  3. 3.
    Malhi Y, Román-Cuesta RM (2008) Analysis of lacunarity and scales of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies. Remote Sens Environ 112:2074–2087CrossRefGoogle Scholar
  4. 4.
    Velazquez-Camilo O, Bolaños-Reynoso E, Rodriguez E, Alvarez-Ramirez J (2010) Characterization of cane sugar crystallization using image fractal analysis. J Food Eng 100:77–84CrossRefGoogle Scholar
  5. 5.
    Caniego FJ, Espejo R, Martin MA, San José F (2005) Multifractal scaling of soil spatial variability. Ecol Model 182:291–303CrossRefGoogle Scholar
  6. 6.
    Sachs D, Lovejoy S, Schertzer D (2002) The multifractal scaling of cloud radiances from 1m to 1km. Fractals 10:253–257CrossRefGoogle Scholar
  7. 7.
    Chung HW, Huang YH (2000) Fractal analysis of nuclear medicine images for the diagnosis of pulmonary emphysema. Am J Roentgenol 174:1055–1059CrossRefGoogle Scholar
  8. 8.
    Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov P, Peng CK, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. PNAS 99:2466–2472CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sánchez I, Uzcátegui G (2011) Fractals in dentistry. J Dent 39:273–292CrossRefPubMedGoogle Scholar
  10. 10.
    Updike SX, Nowzari H (2008) Fractal analysis of dental radiographs to detect periodontitis-induced trabecular changes. J Periodontal Res 43:658–664CrossRefPubMedGoogle Scholar
  11. 11.
    dos Santos LCB, Carvalho AAT, Leao JC, Duarte-Neto PJ, Stosic T, Stosic B (2015) Fractal measure and microscopic modeling of osseointegration. Int J Prosthodont Restor Dent; accepted for publicationGoogle Scholar
  12. 12.
    Perotti V, Aprile G, Degidi M, Piatelli A, Lezzi G (2011) Fractal analysis: a novel method to assess roughness organization of implant surface topography. Int J Prosthodont Restor Dent 31:633–639Google Scholar
  13. 13.
    Lezzi G, Aprile G, Tripodi D, Scarano A, Piatelli A, Perotti V (2012) Implant surface topographies analyzed using fractal dimension. Implant Dent 20:131–138Google Scholar
  14. 14.
    Ehrenfest D (2011) Fractal patterns applied to implant surface: definitions and perspectives. J Oral Implantol 37:506–509CrossRefGoogle Scholar
  15. 15.
    Mandelbrot BB (1982) The fractal geomeytry of nature. Freeman, San FranciscoGoogle Scholar
  16. 16.
    Zaia A, Eleonori R, Maponi P, Rossi R, Murri R (2006) MR imaging and osteoporosis: fractal lacunarity analysis of trabecular bone. IEEE Trans Inf Technol Biomed 10:484–489CrossRefPubMedGoogle Scholar
  17. 17.
    Yasar F, Akqunlu F (2005) Fractal dimension and lacunarity of dental radiographs. Dentomaxillofacial Radiol 34:261–267CrossRefGoogle Scholar
  18. 18.
    Feder J (1988) Fractals. Plenum Press, New YorkCrossRefGoogle Scholar
  19. 19.
    Stosic T, Stosic B (2006) Multifractal analysis of human retinal vessels. IEEE Trans Med Imaging 25:1101–1107CrossRefPubMedGoogle Scholar
  20. 20.
    Lopes R, Betrouni N (2009) Fractal and multifractal analysis: a review. Med Image Anal 13:634–649CrossRefPubMedGoogle Scholar
  21. 21.
    L. Seuront, Fractals and multifractals in ecology and aquatic science, Taylor & Francis 2009, 400pGoogle Scholar
  22. 22.
    Lovejoy S, Schertzer D (2007) Scale, scaling and multifractals in geophysics: twenty years on. Nonlinear dynamics in Geosciences, Ed. A.A. Tsonis, J. Elsner, Springer, 311-337Google Scholar
  23. 23.
    Guo CY, Tang ATH, Matinlinna JP (2012) Insights into surface treatment methods of titanium dental implants. J Adhes Sci Technol 26:189–205CrossRefGoogle Scholar
  24. 24.
    Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRefPubMedGoogle Scholar
  25. 25.
    Theiller J (1990) Estimating fractal dimension. J Opt Soc Am 7:1055–1073CrossRefGoogle Scholar
  26. 26.
    Allain C, Cloitre M (1991) Characterizing the lacunarity of random and deterministic fractal sets. Phys Rev A 44:3552–3558CrossRefPubMedGoogle Scholar
  27. 27.
    Plotnick RE, Gardner RH, Hargrove WW, Prestegaard K, Perlmutter M (1996) Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys Rev E 53:5461–5468CrossRefGoogle Scholar
  28. 28.
    Myint SW, Lam N (2005) A study of lacunarity-based texture analysis approaches to improve urban image classification. Comput Environ Urban Syst 29:501–523CrossRefGoogle Scholar
  29. 29.
    Chhabra A, Jensn RV (1989) Direct determination of the f(α) singularity spectrum. Phys Rev Lett 62:1327–1330CrossRefPubMedGoogle Scholar
  30. 30.
    Shimizu Y, Thurner S, Ehrenberger K (2002) Multifractal spectra as a measure of complexity in human posture. Fractals 10:103–116CrossRefGoogle Scholar
  31. 31.
    de Benicio RB, Stosic T, de Figueiredo PH, Stosic B (2013) Multifractal behavior of wild-land and forest fire time series in Brazil. Phys A 392:6367–6374CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Daniel de Souza Santos
    • 1
  • Leonardo Cavalcanti Bezerra dos Santos
    • 2
  • Alessandra de Albuquerque Tavares Carvalho
    • 2
  • Jair Carneiro Leão
    • 2
  • Claudio Delrieux
    • 3
  • Tatijana Stosic
    • 4
  • Borko Stosic
    • 4
  1. 1.Departamento de FísicaUniversidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Departamento de Clínica e Odontologia PreventivaUniversidade Federal de PernambucoRecifeBrazil
  3. 3.Departamento de Ingeniería Eléctrica y de ComputadorasUniversidad Nacional del SurBahía BlancaArgentina
  4. 4.Departamento de Estatística e InformáticaUniversidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations