Skip to main content

Advertisement

Log in

Osteoblast differentiation is enhanced by a nano-to-micro hybrid titanium surface created by Yb:YAG laser irradiation

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to analyze the capacity of a new modified laser surface to stimulate calvarial osteoblasts isolated from neonatal mouse bones to differentiate and form mineralized nodules.

Methods

Titanium discs were subjectezd or not to laser irradiation according to specific parameters and characterized. Osteoblasts isolated from neonatal mouse calvaria were cultured over the discs, and the capacity of these cells to proliferate (MTT assay), form mineralized nodules (Alizarin red assay), and enhance alkaline phosphatase activity (ALPase activity) was analyzed. Real-time PCR was used for quantification of gene expression.

Results

Laser-irradiated titanium discs (L) presented a rough nano-to-micrometric oxidized surface contrasting with the smooth pattern on polished discs (P). The Ra on the micrometric level increased from 0.32 ± 0.01 μm on P surfaces to 10.57 ± 0.39 μm on L surfaces. When compared with P, L promoted changes in osteoblast morphology, increased mineralized nodule formation in osteoblasts cultured on the surfaces for 14 days, and enhanced ALPase activity at days 7 and 14. Transcription factors triggering osteoblast differentiation (Runx2 and Sp7) and genes encoding the bone extracellular matrix proteins collagen type-1 (Col1a1), osteopontin (Spp1), and osteocalcin (Bglap) were upregulated in cells on L surfaces compared with those on P surfaces at days 1–14.

Conclusion

Laser treatment of titanium surfaces created a rough surface that stimulated osteoblast differentiation.

Clinical relevance

Laser treatment of titanium generates a reproducible and efficient surface triggering osteoblast differentiation that can be of importance for osteointegration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Krischak GD, Gebhard F, Mohr W, Krivan V, Ignatius A, Beck A, Wachter NJ, Reuter P, Arand M, Kinzl L, Claes LE (2004) Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates. Arch Orthop Trauma Surg 124:104–113

    Article  PubMed  Google Scholar 

  2. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:S96–S101. doi:10.1007/s005860100282

    Article  PubMed  PubMed Central  Google Scholar 

  3. Esposito M, Grusovin MG, Willings M, Coulthard P, Worthington HV (2007) The effectiveness of immediate, early, and conventional loading of dental implants: a Cochrane systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants 22:893–904

    PubMed  Google Scholar 

  4. Khang D, Choi J, Im YM, Kim YJ, Jang JH, Kang SS, Nam TH, Song J, Park JW (2012) Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials 33:5997–6007. doi:10.1016/j.biomaterials.2012.05.005

    Article  PubMed  Google Scholar 

  5. Olivares-Navarrete R, Raines AL, Hyzy SL, Park JH, Hutton DL, Cochran DL, Boyan BD, Schwartz Z (2012) Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age. J Bone Miner Res 27:1773–83. doi:10.1002/jbmr.1628

    Article  PubMed  Google Scholar 

  6. Khan MR, Donos N, Salih V, Brett PM (2012) The enhanced modulation of key bone matrix components by modified Titanium implant surfaces. Bone 50:1–8. doi:10.1016/j.bone.2011.07.040

    Article  PubMed  Google Scholar 

  7. Gittens RA, Olivares-Navarrete R, McLachlan T, Cai Y, Hyzy SL, Schneider JM, Schwartz Z, Sandhage KH, Boyan BD (2012) Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces. Biomaterials 33:8986–94. doi:10.1016/j.biomaterials.2012.08.059

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dalby M, Gadegaard N, Tare R, Andar A, Riehle M, Herzyk P, Wilkinson C, Oreffo R (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003. doi:10.1038/nmat2013

    Article  PubMed  Google Scholar 

  9. Harle J, Salih V, Olsen I, Brett P, Jones F, Tonetti M (2004) Gene expression profiling of bone cells on smooth and rough titanium surfaces. J Mater Sci Mater Med 15:1255–8

    Article  PubMed  Google Scholar 

  10. Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, Tonetti M (2004) Roughness response genes in osteoblasts. Bone 35:124–33. doi:10.1016/j.bone.2004.03.009

    Article  PubMed  Google Scholar 

  11. Park JW, Kim YJ, Park CH, Lee DH, Ko YG, Jang JH, Lee CS (2009) Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomater 5:3272–80. doi:10.1016/j.actbio.2009.04.038

    Article  PubMed  Google Scholar 

  12. Butz F, Aita H, Wang CJ, Ogawa T (2006) Harder and stiffer bone osseointegrated to roughened titanium. J Dent Res 85:560–5

    Article  PubMed  Google Scholar 

  13. Saruwatari L, Aita H, Butz F, Nakamura HK, Ouyang J, Yang Y, Chiou WA, Ogawa T (2005) Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure. J Bone Miner Res 20:2002–16. doi:10.1359/jbmr.050703

    Article  PubMed  Google Scholar 

  14. Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20(Suppl 4):172–84. doi:10.1111/j.1600-0501.2009.01775.x

    Article  PubMed  Google Scholar 

  15. Bonsignore LA, Colbrunn RW, Tatro JM, Messerschmitt PJ, Hernandez CJ, Goldberg VM, Stewart MC, Greenfield EM (2011) Surface contaminants inhibit osseointegration in a novel murine model. Bone 49:923–30. doi:10.1016/j.bone.2011.07.013

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pető G, Karacs A, Pászti Z, Guczi L, Divinyi T, Joób A (2002) Surface treatment of screw shaped titanium dental implants by high intensity laser pulses. Appl Surf Sci 186:7–13. doi:10.1016/S0169-4332(01)00769-3

    Article  Google Scholar 

  17. Gaggl A, Schultes G, Muller WD, Karcher H (2000) Scanning electron microscopical analysis of laser-treated titanium implant surfaces--a comparative study. Biomaterials 21:1067–73

    Article  PubMed  Google Scholar 

  18. Steinemann SG (1998) Titanium--the material of choice? Periodontol 2000(17):7–21

    Article  Google Scholar 

  19. Ciganovic J, Stasic J, Gakovic B, Momcilovic M, Milovanovic D, Bokorov M, Trtica M (2012) Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres—comparative study. Appl Surf Sci 258:2741–2748. doi:10.1016/j.apsusc.2011.10.125

    Article  Google Scholar 

  20. Souza FA, Queiroz TP, Guastaldi AC, Garcia-Junior IR, Magro-Filho O, Nishioka RS, Sisti KE, Sonoda CK (2012) Comparative in vivo study of commercially pure Ti implants with surfaces modified by laser with and without silicate deposition: biomechanical and scanning electron microscopy analysis. J Biomed Mater Res B Appl Biomater 101:76–84. doi:10.1002/jbm.b.32818

    PubMed  Google Scholar 

  21. Brånemark R, Emanuelsson L, Palmquist A, Thomsen P (2011) Bone response to laser-induced micro- and nano-size titanium surface features. Nanomedicine 7:220–7. doi:10.1016/j.nano.2010.10.006

    PubMed  Google Scholar 

  22. Ayubianmarkazi N, Karimi M, Koohkan S, Sanasa A, Foroutan T (2015) An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells on SLA titanium surfaces irradiated by different powers of CO lasers. Lasers Med Sci. doi:10.1007/s10103-015-1756-z

    PubMed  Google Scholar 

  23. Boonekamp PMHJ, Hamilton JW, Cohn D, Jilka RL (1984) Effects of culture on the hormone responsiveness of bone cells isolated by improved sequential digestion procedure. Proc K Ned Akad Wet 87:371–82

    Google Scholar 

  24. Galli C, Macaluso GM, Elezi E, Ravanetti F, Cacchioli A, Gualini G, Passeri G (2011) The effects of Er:YAG laser treatment on titanium surface profile and osteoblastic cell activity: an in vitro study. J Periodontol 82:1169–77. doi:10.1902/jop.2010.100428

    Article  PubMed  Google Scholar 

  25. Hallgren C, Reimers H, Chakarov D, Gold J, Wennerberg A (2003) An in vivo study of bone response to implants topographically modified by laser micromachining. Biomaterials 24:701–710. doi:10.1016/S0142-9612(02)00266-1

    Article  PubMed  Google Scholar 

  26. Prodanov L, Lamers E, Wolke J, Huiberts R, Jansen J, Walboomers X (2013) In vivo comparison between laser-treated and grit blasted/acid etched titanium. Clin Oral Implants Res 25:234–9. doi:10.1111/clr.12109

    Article  PubMed  Google Scholar 

  27. Wennerberg A, Albrektsson T (2010) On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 25:63–74

    PubMed  Google Scholar 

  28. Sollazzo V, Pezzetti F, Scarano A, Piattelli A, Massari L, Brunelli G, Carinci F (2007) Anatase coating improves implant osseointegration in vivo. J Craniofac Surg 18:806–810. doi:10.1097/scs.0b013e3180a7728f

    Article  PubMed  Google Scholar 

  29. Huang N, Chen Y, Luo J, Yi J, Lu R, Xiao J, Xue Z, Liu X (1994) In vitro investigation of blood compatibility of Ti with oxide layers of rutile structure. J Biomater Appl 8:404–412

    Article  PubMed  Google Scholar 

  30. He J, Zhou W, Zhou X, Zhong X, Zhang X, Wan P, Zhu B, Chen W (2008) The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J Mater Sci Mater Med 19:3465–3472. doi:10.1007/s10856-008-3505-3

    Article  PubMed  Google Scholar 

  31. Yu W-q, X-q J, F-q Z, Xu L (2010) The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res A 94:1012–1022. doi:10.1002/jbm.a.32687

    PubMed  Google Scholar 

  32. Granholm S, Henning P, Lindholm C, Lerner UH (2013) Osteoclast progenitor cells present in significant amounts in mouse calvarial osteoblast isolations and osteoclastogenesis increased by BMP-2. Bone 52:83–92. doi:10.1016/j.bone.2012.09.019

    Article  PubMed  Google Scholar 

  33. Mendonça DBS, Miguez PA, Mendonça G, Yamauchi M, Aragão FJL, Cooper LF (2011) Titanium surface topography affects collagen biosynthesis of adherent cells. Bone 49:463–472. doi:10.1016/j.bone.2011.04.019

    Article  PubMed  Google Scholar 

  34. Long F (2012) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13:27–38. doi:10.1038/nrm3254

    Article  Google Scholar 

  35. Guo J, Padilla RJ, Ambrose W, De Kok IJ, Cooper LF (2007) The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials 28:5418–25. doi:10.1016/j.biomaterials.2007.08.032

    Article  PubMed  Google Scholar 

  36. Stein GS, Lian JB, Van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM (2004) Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23:4315–29. doi:10.1038/sj.onc.1207676

    Article  PubMed  Google Scholar 

  37. Sodek KL, Tupy JH, Sodek J, Grynpas MD (2000) Relationships between bone protein and mineral in developing porcine long bone and calvaria. Bone 26:189–98

    Article  PubMed  Google Scholar 

  38. Bueno Rde B, Adachi P, Castro-Raucci LM, Rosa AL, Nanci A, Oliveira PT (2011) Oxidative nanopatterning of titanium surfaces promotes production and extracellular accumulation of osteopontin. Braz Dent J 22:179–84

    PubMed  Google Scholar 

  39. Kim MJ, Kim CW, Lim YJ, Heo SJ (2006) Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J Biomed Mater Res A 79:1023–32. doi:10.1002/jbm.a.31040

    Article  PubMed  Google Scholar 

  40. Neve A, Corrado A, Cantatore FP (2012) Osteocalcin: Skeletal and extra-skeletal effects. J Cell Physiol 228:1149–53. doi:10.1002/jcp.24278

    Article  Google Scholar 

  41. Delmas PD, Christiansen C, Mann KG, Price PA (1990) Bone Gla protein (osteocalcin) assay standardization report. J Bone Miner Res 5:5–11. doi:10.1002/jbmr.5650050104

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP (grants 2011/16351-1 and 2012/14912-9). The authors thank the Advanced Microscopy Laboratory from the Chemistry Institute of Araraquara for FEG-SEM facilities and Prof. Antonio Carlos Guastaldi for use of the laser facility. The authors also thank Antonio Fasano for his kind assistance on laser parameter characterization.

Conflict of interests

Authors declare not to have any influences that may potentially undermine the objectivity or integrity of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro P. C. Souza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental 1

EDS analysis of P (a) and L (b) surfaces. (DOCX 265 kb)

Supplemental 2

XRD patterns for: (a) P sample; and (b) L sample. (DOC 543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariscal-Muñoz, E., Costa, C.A.S., Tavares, H.S. et al. Osteoblast differentiation is enhanced by a nano-to-micro hybrid titanium surface created by Yb:YAG laser irradiation. Clin Oral Invest 20, 503–511 (2016). https://doi.org/10.1007/s00784-015-1533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1533-1

Keywords

Navigation