Skip to main content

Advertisement

Log in

The effect of diluted triple and double antibiotic pastes on dental pulp stem cells and established Enterococcus faecalis biofilm

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To investigate the effect of various dilutions of antibiotic medicaments used in endodontic regeneration on the survival of human dental pulp stem cells (DPSCs) and to determine their antibacterial effect against established Enterococcus faecalis biofilm.

Materials and methods

The cytotoxic and antibacterial effects of different triple (TAP) and double antibiotic paste (DAP) dilutions (0.125, 0.25, 0.5, 1, and 10 mg/ml) were tested against Enterococcus faecalis established biofilm and DPSC. Established bacterial biofilm were exposed to antibiotic dilutions for 3 days. Then, biofilms were collected, spiral plated, and the numbers of bacterial colony forming units (CFU/ml) were determined. For the cytotoxic effect, lactate dehydrogenase activity assays (LDH) and cell viability assays (WST-1) were used to measure the percentage of DPSC cytotoxicity after 3-day treatment with the same antibiotic dilutions. A general linear mixed model was used for statistical analyses (α = 0.05).

Results

All antibiotic dilutions significantly decreased the bacterial CFU/ml. For WST-1 assays, all antibiotic dilutions except 0.125 mg/ml significantly reduced the viability of DPSC. For LDH assays, the three lowest tested concentrations of DAP (0.5, 0.25, 0.125 mg/ml) and the two lowest concentrations of TAP (0.25 and 0.125 mg/ml) were non-toxic to DPSC.

Conclusions

All tested dilutions had an antibacterial effect against E. faecalis. However, 0.125 mg/ml of DAP and TAP showed a significant antibacterial effect with no cytotoxic effects on DPSCs.

Clinical relevance

Using appropriate antibiotic concentrations of intracanal medicament during endodontic regeneration procedures is critical to disinfect root canal and decrease the adverse effects on stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nosrat A, Seifi A, Asgary S (2011) Regenerative endodontic treatment (revascularization) for necrotic immature permanent molars: a review and report of two cases with a new biomaterial. J Endod 37:562–567

    Article  PubMed  Google Scholar 

  2. Thibodeau B, Trope M (2007) Pulp revascularization of a necrotic infected immature permanent tooth: case report and review of the literature. Pediatr Dent 29:47–50

    PubMed  Google Scholar 

  3. Lenzi R, Trope M (2012) Revitalization procedures in two traumatized incisors with different biological outcomes. J Endod 38:411–414

    Article  PubMed  Google Scholar 

  4. Murray PE, Garcia-Godoy F, Hargreaves KM (2007) Regenerative endodontics: a review of current status and a call for action. J Endod 33:377–390

    Article  PubMed  Google Scholar 

  5. Lovelace TW, Henry MA, Hargreaves KM, Diogenes A (2011) Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. J Endod 37:133–138

    Article  PubMed  Google Scholar 

  6. Hoshino E, Kurihara-Ando N, Sato I, Uematsu H, Sato M, Kota K et al (1996) In-vitro antibacterial susceptibility of bacteria taken from infected root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. Int Endod J 29:125–130

    Article  PubMed  Google Scholar 

  7. Sato I, Ando-Kurihara N, Kota K, Iwaku M, Hoshino E (1996) Sterilization of infected root-canal dentine by topical application of a mixture of ciprofloxacin, metronidazole and minocycline in situ. Int Endod J 29:118–124

    Article  PubMed  Google Scholar 

  8. Miller EK, Lee JY, Tawil PZ, Teixeira FB, Vann WF (2012) Emerging therapies for the management of traumatized immature permanent incisors. Pediatr Dent 34:66–69

    PubMed  Google Scholar 

  9. Garcia-Godoy F, Murray PE (2012) Recommendations for using regenerative endodontic procedures in permanent immature traumatized teeth. Dent Traumatol 28:33–41

    Article  PubMed  Google Scholar 

  10. Diogenes A, Henry MA, Teixeira FB, Hargreaves KM (2013) An update on clinical regenerative endodontics. Endod Top 28:2–23

    Article  Google Scholar 

  11. Trope M (2010) Treatment of the immature tooth with a non-vital pulp and apical periodontitis. Dent Clin N Am 54:313–324

    Article  PubMed  Google Scholar 

  12. Iwaya SI, Ikawa M, Kubota M (2001) Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent Traumatol 17:185–187

    Article  PubMed  Google Scholar 

  13. Ruparel NB, Teixeira FB, Ferraz CC, Diogenes A (2012) Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J Endod 38:1372–1375

    Article  PubMed  Google Scholar 

  14. Yadlapati M, Souza LC, Dorn S, Garlet GP, Letra A, Silva RM (2014) Deleterious effect of triple antibiotic paste on human periodontal ligament fibroblasts. Int Endod J 47:769–775

    Article  PubMed  Google Scholar 

  15. Labban N, Yassen GH, Windsor LJ, Platt JA (2014) The direct cytotoxic effects of medicaments used in endodontic regeneration on human dental pulp cells. Dent Traumatol 30:429–434

    Article  PubMed  Google Scholar 

  16. Srisuwan T, Phumpatrakom P (2014) Regenerative capacity of human dental pulp and apical papilla cells after treatment with a 3-antibiotic mixture. J Endod 40:399–405

    Article  PubMed  Google Scholar 

  17. Althumairy RI, Teixeira FB, Diogenes A (2014) Effect of dentin conditioning with intracanal medicaments on survival of stem cells of apical papilla. J Endod 40:521–525

    Article  PubMed  Google Scholar 

  18. Sabrah AH, Yassen GH, Gregory RL (2013) Effectiveness of antibiotic medicaments against biofilm formation of Enterococcus faecalis and Porphyromonas gingivalis. J Endod 39:1385–9138

    Article  PubMed  Google Scholar 

  19. Chavez de Paz LE (2007) Redefining the persistent infection in root canals: possible role of biofilm communities. J Endod 33:652–662

    Article  PubMed  Google Scholar 

  20. Stojicic S, Shen Y, Haapasalo M (2013) Effect of the source of biofilm bacteria, level of biofilm maturation, and type of disinfecting agent on the susceptibility of biofilm bacteria to antibacterial agents. J Endod 39:473–477

    Article  PubMed  Google Scholar 

  21. Perry BC, Zhou D, Wu X, Yang FC, Byers MA, Chu TM et al (2008) Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng C Methods 14:149–156

    Article  Google Scholar 

  22. Woods EJ, Perry BC, Hockema JJ, Larson L, Zhou D, Goebel WS (2009) Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology 59:150–157

    Article  PubMed Central  PubMed  Google Scholar 

  23. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB (2006) Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 32:93–98

    Article  PubMed  Google Scholar 

  24. Kayaoglu G, Orstavik D (2004) Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med 15:308–320

    Article  PubMed  Google Scholar 

  25. Al-Ahmad A, Ameen H, Pelz K, Karygianni L, Wittmer A, Anderson AC et al (2014) Antibiotic resistance and capacity for biofilm formation of different bacteria isolated from endodontic infections associated with root-filled teeth. J Endod 40:223–230

    Article  PubMed  Google Scholar 

  26. Al-Ahmad A, Muller N, Wiedmann-Al-Ahmad M, Sava I, Hubner J, Follo M et al (2009) Endodontic and salivary isolates of Enterococcus faecalis integrate into biofilm from human salivary bacteria cultivated in vitro. J Endod 35:986–991

    Article  PubMed  Google Scholar 

  27. British Standards Institution (2006) Quantitative suspension test for the evaluation of basic bactericidal activity of chemical disinfectants and antiseptics: in test methods and requirments (phase 1). London, UK. EN 1040:2005

  28. Arias-Moliz MT, Ferrer-Luque CM, Espigares-Garcia M, Baca P (2009) Enterococcus faecalis biofilms eradication by root canal irrigants. J Endod 35:711–714

    Article  PubMed  Google Scholar 

  29. Athanassiadis B, Abbott PV, George N, Walsh LJ (2010) An in vitro study of the antimicrobial activity of some endodontic medicaments against Enteroccus faecalis biofilms. Aust Dent J 55:150–155

    Article  PubMed  Google Scholar 

  30. Kishen A, Haapasalo M (2010) Biofilm models and methods of biofilm assessment. Endod Top 22:58–78

    Article  Google Scholar 

  31. Barros J, Silva MG, Rocas IN, Goncalves LS, Alves FF, Lopes MA, Pina-Vaz I, Siqueira JF Jr (2014) Antibiofilm effects of endodontic sealers containing quaternary ammonium polyethylenimine nanoparticles. J Endod 40:1167–1171

    Article  PubMed  Google Scholar 

  32. George S, Kishen A (2007) Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection. J Biomed Opt 12:034029

    Article  PubMed  Google Scholar 

  33. Kikkawa R, Yamamoto T, Fukushima T, Yamada H, Horii I (2005) Investigation of a hepatotoxicity screening system in primary cell cultures—“what biomarkers would need to be addressed to estimate toxicity in conventional and new approaches?”. J Toxicol Sci 30:61–72

    Article  PubMed  Google Scholar 

  34. Huhtala A, Mannerstrom M, Alajuuma P, Nurmi S, Toimela T, Tahti H et al (2002) Comparison of an immortalized human corneal epithelial cell line and rabbit corneal epithelial cell culture in cytotoxicity testing. J Ocul Pharmacol Ther 18:163–175

    Article  PubMed  Google Scholar 

  35. American Association of Endodontists (2014) AAE clinical considerations for a regenerative procedure. USA. https://www.aae.org/uploadedfiles/publications_and_research/research/currentregenerativeendodonticconsiderations.pdf. Accessed 5 Aug 2014

  36. Nagata JY, Gomes BP, Rocha Lima TF, Murakami LS, de Faria DE, Campos GR et al (2014) Traumatized immature teeth treated with 2 protocols of pulp revascularization. J Endod 40:606–612

    Article  PubMed  Google Scholar 

  37. Becerra P, Ricucci D, Loghin S, Gibbs JL, Lin LM (2014) Histologic study of a human immature permanent premolar with chronic apical abscess after revascularization/revitalization. J Endod 40:133–139

    Article  PubMed  Google Scholar 

  38. Bottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y et al (2013) Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res 92:963–969

    Article  PubMed  Google Scholar 

  39. Bottino MC, Yassen GH, Platt JA, Labban N, Windsor LJ, Spolnik KJ et al (2013) A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations. J Tissue Eng Regen Med. doi:10.1002/term.1712

    PubMed  Google Scholar 

Download references

Conflict of interest

WSG is consulting medical director of Cook General BioTechnology, LLC. The other authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa H. A. Sabrah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabrah, A.H.A., Yassen, G.H., Liu, WC. et al. The effect of diluted triple and double antibiotic pastes on dental pulp stem cells and established Enterococcus faecalis biofilm. Clin Oral Invest 19, 2059–2066 (2015). https://doi.org/10.1007/s00784-015-1423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1423-6

Keywords

Navigation