Skip to main content

Advertisement

Log in

Do bonding agents protect the bracket-periphery?—Evaluation by consecutive μCT scans and fluorescence measurements

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this in vitro study was to consecutively determine the effect of three bonding agents on the prevention of enamel demineralisation at the bracket-periphery and to compare the suitability of micro-computed tomography (μCT) scans and quantitative light-induced fluorescence (QLF) to detect changes within subsurface lesions.

Materials and methods

The effect of a resin-modified glass ionomer cement (RMGI) (Fuji Ortho LC), a compomer (Assure) and a composite (Transbond XT) on the prevention of enamel demineralisation at the bracket-periphery was examined. After 7, 14, 21 and 28 days of pH cycling, the teeth (N = 45) were examined by consecutive μCT scans and by using a customised QLF set-up.

Results

Particularly for the RMGI and for the compomer, the QLF and μCT scans showed that the formation and the body of the lesion were not precisely located at the enamel next to the bracket margin. There was an area that was almost protected. The progression of demineralisation was decreased for the RMGI and the compomer-treated teeth.

Conclusion

For bonding orthodontic brackets, the RMGI and compomer were comparably able to decrease the progression of white spot lesions (WSL), although the RMGI showed marginally superior protection. Both methods (QLF and μCT scans) were suitable for investigating the longitudinal fluoride effects on WSL, though these effects were more accurately described by mineral (fluorescence) loss or volume changes than by lesion depth.

Clinical relevance

The progression of WSL at the bracket-periphery could be altered by using fluoride-releasing bonding agents for bracket application. This approach represents a minimally invasive preventive measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karkhanechi M, Chow D, Sipkin J, Sherman D, Boylan RJ, Norman RG, Craig RG, Cisneros GJ (2013) Periodontal status of adult patients treated with fixed buccal appliances and removable aligners over one year of active orthodontic therapy. Angle Orthod 83:146–151. doi:10.2319/031212-217.1

    Article  PubMed  Google Scholar 

  2. Naranjo AA, Trivino ML, Jaramillo A, Betancourth M, Botero JE (2006) Changes in the subgingival microbiota and periodontal parameters before and 3 months after bracket placement. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 130:275 e17–22. doi:10.1016/j.ajodo.2005.10.022

    Google Scholar 

  3. Paschos E, Bucher K, Huth KC, Crispin A, Wichelhaus A, Dietel T (2013) Is there a need for orthodontic plaque indices?—Diagnostic accuracy of four plaque indices. Clin Oral Investig. doi:10.1007/s00784-013-1076-2

    Google Scholar 

  4. Ogaard B, Rolla G, Arends J (1988) Orthodontic appliances and enamel demineralization. Part 1. Lesion development. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 94:68–73

    Google Scholar 

  5. Ogaard B (1989) Prevalence of white spot lesions in 19-year-olds: a study on untreated and orthodontically treated persons 5 years after treatment. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 96:423–427

    Google Scholar 

  6. Tufekci E, Dixon JS, Gunsolley JC, Lindauer SJ (2011) Prevalence of white spot lesions during orthodontic treatment with fixed appliances. Angle Orthod 81:206–210. doi:10.2319/051710-262.1

    Article  PubMed  Google Scholar 

  7. Mitchell L (1992) Decalcification during orthodontic treatment with fixed appliances—an overview. Br J Orthod 19:199–205

    Article  PubMed  Google Scholar 

  8. Al-Anezi SA, Harradine NW (2012) Quantifying plaque during orthodontic treatment. Angle Orthod 82:748–753. doi:10.2319/050111-312.1

    Article  PubMed  Google Scholar 

  9. Julien KC, Buschang PH, Campbell PM (2013) Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod 83:641–647. doi:10.2319/071712-584.1

    Article  PubMed  Google Scholar 

  10. Geiger AM, Gorelick L, Gwinnett AJ, Griswold PG (1988) The effect of a fluoride program on white spot formation during orthodontic treatment. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board of Orthod 93:29–37

    Google Scholar 

  11. Behnan SM, Arruda AO, Gonzalez-Cabezas C, Sohn W, Peters MC (2010) In-vitro evaluation of various treatments to prevent demineralization next to orthodontic brackets. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 138:712 e1–7. doi:10.1016/j.ajodo.2010.05.014, discussion 712–3

    Google Scholar 

  12. Buren JL, Staley RN, Wefel J, Qian F (2008) Inhibition of enamel demineralization by an enamel sealant, Pro Seal: an in-vitro study. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 133:S88–S94. doi:10.1016/j.ajodo.2007.01.025

    Google Scholar 

  13. Ghiz MA, Ngan P, Kao E, Martin C, Gunel E (2009) Effects of sealant and self-etching primer on enamel decalcification. Part II: an in-vivo study. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 135:206–213. doi:10.1016/j.ajodo.2007.02.060

    Google Scholar 

  14. Hu W, Featherstone JD (2005) Prevention of enamel demineralization: an in-vitro study using light-cured filled sealant. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 128:592–600. doi:10.1016/j.ajodo.2004.07.046, quiz 670

    Google Scholar 

  15. Soliman MM, Bishara SE, Wefel J, Heilman J, Warren JJ (2006) Fluoride release rate from an orthodontic sealant and its clinical implications. Angle Orthod 76:282–288. doi:10.1043/0003-3219(2006)076[0282:FRRFAO]2.0.CO;2

    PubMed  Google Scholar 

  16. Demito CF, Rodrigues GV, Ramos AL, Bowman SJ (2011) Efficacy of a fluoride varnish in preventing white-spot lesions as measured with laser fluorescence. J Clin Orthod JCO 45:25–29, quiz 40

    Google Scholar 

  17. Ogaard B, Larsson E, Henriksson T, Birkhed D, Bishara SE (2001) Effects of combined application of antimicrobial and fluoride varnishes in orthodontic patients. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 120:28–35. doi:10.1067/mod.2001.114644

    Google Scholar 

  18. Stecksen-Blicks C, Renfors G, Oscarson ND, Bergstrand F, Twetman S (2007) Caries-preventive effectiveness of a fluoride varnish: a randomized controlled trial in adolescents with fixed orthodontic appliances. Caries Res 41:455–459. doi:10.1159/000107932

    Article  PubMed  Google Scholar 

  19. Knosel M, Bojes M, Jung K, Ziebolz D (2012) Increased susceptibility for white spot lesions by surplus orthodontic etching exceeding bracket base area. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 141:574–582. doi:10.1016/j.ajodo.2011.11.017

    Google Scholar 

  20. Korbmacher-Steiner HM, Schilling AF, Huck LG, Kahl-Nieke B, Amling M (2013) Laboratory evaluation of toothbrush/toothpaste abrasion resistance after smooth enamel surface sealing. Clin Oral Investig 17:765–774. doi:10.1007/s00784-012-0771-8

    Article  PubMed  Google Scholar 

  21. McNeill CJ, Wiltshire WA, Dawes C, Lavelle CL (2001) Fluoride release from new light-cured orthodontic bonding agents. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 120:392–397. doi:10.1067/mod.2001.118103

    Google Scholar 

  22. Melo MA, Morais WA, Passos VF, Lima JP, Rodrigues LK (2013) Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles. Clin Oral Investig. doi:10.1007/s00784-013-1073-5

    PubMed  Google Scholar 

  23. Takahashi K, Emilson CG, Birkhed D (1993) Fluoride release in vitro from various glass ionomer cements and resin composites after exposure to NaF solutions. Dent Mater Off Publ Acad Dent Mater 9:350–354

    Google Scholar 

  24. Cohen WJ, Wiltshire WA, Dawes C, Lavelle CL (2003) Long-term in vitro fluoride release and rerelease from orthodontic bonding materials containing fluoride. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 124:571–576. doi:10.1016/S0889540603005730

    Google Scholar 

  25. Rix D, Foley TF, Banting D, Mamandras A (2001) A comparison of fluoride release by resin-modified GIC and polyacid-modified composite resin. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 120:398–405. doi:10.1067/mod.2001.116083

    Google Scholar 

  26. Wheeler AW, Foley TF, Mamandras A (2002) Comparison of fluoride release protocols for in-vitro testing of 3 orthodontic adhesives. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 121:301–309

    Google Scholar 

  27. Forsten L (1995) Resin-modified glass ionomer cements: fluoride release and uptake. Acta Odontol Scand 53:222–225

    Article  PubMed  Google Scholar 

  28. Dionysopoulos D, Koliniotou-Koumpia E, Helvatzoglou-Antoniades M, Kotsanos N (2013) Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives. Dent Mater J 32:296–304

    Article  PubMed  Google Scholar 

  29. Miguel JA, Almeida MA, Chevitarese O (1995) Clinical comparison between a glass ionomer cement and a composite for direct bonding of orthodontic brackets. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 107:484–487

    Google Scholar 

  30. Wiltshire WA (1994) Shear bond strengths of a glass ionomer for direct bonding in orthodontics. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 106:127–130

    Google Scholar 

  31. Foster JA, Berzins DW, Bradley TG (2008) Bond strength of an amorphous calcium phosphate-containing orthodontic adhesive. Angle Orthod 78:339–344. doi:10.2319/020807-60

    Article  PubMed  Google Scholar 

  32. Lamper T, Ilie N, Huth KC, Rudzki I, Wichelhaus A, Paschos E (2014) Self-etch adhesives for the bonding of orthodontic brackets: faster, stronger, safer? Clin Oral Investig 18:313–319. doi:10.1007/s00784-013-0942-2

    Article  PubMed  Google Scholar 

  33. Corry A, Millett DT, Creanor SL, Foye RH, Gilmour WH (2003) Effect of fluoride exposure on cariostatic potential of orthodontic bonding agents: an in vitro evaluation. J Orthod 30:323–329, discussion 298–9

    Article  PubMed  Google Scholar 

  34. Gorton J, Featherstone JD (2003) In vivo inhibition of demineralization around orthodontic brackets. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 123:10–14. doi:10.1067/mod.2003.47

    Google Scholar 

  35. Paschos E, Kleinschrodt T, Clementino-Luedemann T, Huth KC, Hickel R, Kunzelmann KH, Rudzki-Janson I (2009) Effect of different bonding agents on prevention of enamel demineralization around orthodontic brackets. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 135:603–612. doi:10.1016/j.ajodo.2007.11.028

    Google Scholar 

  36. Pascotto RC, Navarro MF, Capelozza Filho L, Cury JA (2004) In vivo effect of a resin-modified glass ionomer cement on enamel demineralization around orthodontic brackets. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 125:36–41. doi:10.1016/S0889540603005717

    Google Scholar 

  37. Vorhies AB, Donly KJ, Staley RN, Wefel JS (1998) Enamel demineralization adjacent to orthodontic brackets bonded with hybrid glass ionomer cements: an in vitro study. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 114:668–674

    Google Scholar 

  38. Yamada T, Smith DC, Maijer R (1988) Tensile and shear bond strengths of orthodontic direct-bonding adhesives. Dental Materials : Official Publication of the Academy of Dental Materials 4:243–250

    Article  Google Scholar 

  39. Cain K, Hicks J, English J, Flaitz C, Powers JM, Rives T (2006) In vitro enamel caries formation and orthodontic bonding agents. Am J Dent 19:187–192

    PubMed  Google Scholar 

  40. Chung CK, Millett DT, Creanor SL, Gilmour WH, Foye RH (1998) Fluoride release and cariostatic ability of a compomer and a resin-modified glass ionomer cement used for orthodontic bonding. J Dent 26:533–538

    Article  PubMed  Google Scholar 

  41. Nee A, Chan K, Kang H, Staninec M, Darling CL, Fried D (2014) Longitudinal monitoring of demineralization peripheral to orthodontic brackets using cross polarization optical coherence tomography. J Dent. doi:10.1016/j.jdent.2014.02.011

    PubMed  Google Scholar 

  42. Al-Khateeb S, Forsberg CM, de Josselin de Jong E, Angmar-Mansson B (1998) A longitudinal laser fluorescence study of white spot lesions in orthodontic patients. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 113:595–602

    Google Scholar 

  43. Shungin D, Olsson AI, Persson M (2010) Orthodontic treatment-related white spot lesions: a 14-year prospective quantitative follow-up, including bonding material assessment. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthodontists Constituent Soc Am Board Orthod 138:136 e1–8. doi:10.1016/j.ajodo.2009.05.020, discussion 136–7

    Google Scholar 

  44. Hamba H, Nikaido T, Inoue G, Sadr A, Tagami J (2011) Effects of CPP-ACP with sodium fluoride on inhibition of bovine enamel demineralization: a quantitative assessment using micro-computed tomography. J Dent 39:405–413. doi:10.1016/j.jdent.2011.03.005

    Article  PubMed  Google Scholar 

  45. Clementino-Luedemann TN, Kunzelmann KH (2006) Mineral concentration of natural human teeth by a commercial micro-CT. Dent Mater J 25:113–119

    Article  PubMed  Google Scholar 

  46. Nakata K, Nikaido T, Nakashima S, Nango N, Tagami J (2012) An approach to normalizing micro-CT depth profiles of mineral density for monitoring enamel remineralization progress. Dent Mater J 31:533–540

    Article  PubMed  Google Scholar 

  47. Thepyou R, Chanmitkul W, Thanatvarakorn O, Hamba H, Chob-Isara W, Trairatvorakul C, Tagami J (2013) Casein phosphopeptide-amorphous calcium phosphate and glass ionomer show distinct effects in the remineralization of proximal artificial caries lesion in situ. Dent Mater J 32:648–653

    Article  PubMed  Google Scholar 

  48. Liu Y, Hsu CY, Teo CM, Teoh SH (2013) Potential mechanism for the laser-fluoride effect on enamel demineralization. J Dent Res 92:71–75. doi:10.1177/0022034512466412

    Article  PubMed  Google Scholar 

  49. Davis GR, Evershed AN, Mills D (2013) Quantitative high contrast X-ray microtomography for dental research. J Dent. doi:10.1016/j.jdent.2013.01.010

    PubMed  Google Scholar 

  50. Pretty IA, Ellwood RP (2013) The caries continuum: opportunities to detect, treat and monitor the re-mineralization of early caries lesions. J Dent 41(Suppl 2):S12–S21. doi:10.1016/j.jdent.2010.04.003

    Article  PubMed  Google Scholar 

  51. Gomez J, Pretty IA, Santarpia Iii RP, Cantore B, Rege A, Petrou I, Ellwood RP (2014) Quantitative light-induced fluorescence to measure enamel remineralization in vitro. Caries Res 48:223–227. doi:10.1159/000354655

    Article  PubMed  Google Scholar 

  52. Hafstrom-Bjorkman U, Sundstrom F, de Josselin de Jong E, Oliveby A, Angmar-Mansson B (1992) Comparison of laser fluorescence and longitudinal microradiography for quantitative assessment of in vitro enamel caries. Caries Res 26:241–247

    Article  PubMed  Google Scholar 

  53. Higham SM, Pretty IA, Edgar WM, Smith PW (2005) The use of in situ models and QLF for the study of coronal caries. J Dent 33:235–241. doi:10.1016/j.jdent.2004.10.016

    Article  PubMed  Google Scholar 

  54. ten Cate JM, Duijsters PP (1982) Alternating demineralization and remineralization of artificial enamel lesions. Caries Res 16:201–210

    Article  PubMed  Google Scholar 

  55. Meganck JA, Kozloff KM, Thornton MM, Broski SM, Goldstein SA (2009) Beam hardening artifacts in micro-computed tomography scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD. Bone 45:1104–1116. doi:10.1016/j.bone.2009.07.078

    Article  PubMed Central  PubMed  Google Scholar 

  56. Schwass DR, Swain MV, Purton DG, Leichter JW (2009) A system of calibrating microtomography for use in caries research. Caries Res 43:314–321. doi:10.1159/000226230

    Article  PubMed  Google Scholar 

  57. Angmar B, Carlstrom D, Glas JE (1963) Studies on the ultrastructure of dental enamel. IV. The mineralization of normal human enamel. J Ultrastruct Res 8:12–23

    Article  PubMed  Google Scholar 

  58. ten Cate JM, Dundon KA, Vernon PG, Damato FA, Huntington E, Exterkate RA, Wefel JS, Jordan T, Stephen KW, Roberts AJ (1996) Preparation and measurement of artificial enamel lesions, a four-laboratory ring test. Caries Res 30:400–407

    Article  PubMed  Google Scholar 

  59. White DJ, Featherstone JD (1987) A longitudinal microhardness analysis of fluoride dentifrice effects on lesion progression in vitro. Caries Res 21:502–512

    Article  PubMed  Google Scholar 

  60. Tanaka M, Ono H, Kadoma Y, Imai Y (1987) Incorporation into human enamel of fluoride slowly released from a sealant in vivo. J Dent Res 66:1591–1593

    Article  PubMed  Google Scholar 

  61. Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Eng 1:15–23. doi:10.1080/01495739708936692

    Article  Google Scholar 

  62. Dowker SE, Elliott JC, Davis GR, Wilson RM, Cloetens P (2004) Synchrotron x-ray microtomographic investigation of mineral concentrations at micrometre scale in sound and carious enamel. Caries Res 38:514–522. doi:10.1159/000080580

    Article  PubMed  Google Scholar 

  63. Lo EC, Zhi QH, Itthagarun A (2010) Comparing two quantitative methods for studying remineralization of artificial caries. J Dent 38:352–359. doi:10.1016/j.jdent.2010.01.001

    Article  PubMed  Google Scholar 

  64. Pretty IA (2006) Caries detection and diagnosis: novel technologies. J Dent 34:727–739. doi:10.1016/j.jdent.2006.06.001

    Article  PubMed  Google Scholar 

  65. al-Khateeb S, Oliveby A, de Josselin de Jong E, Angmar-Mansson B (1997) Laser fluorescence quantification of remineralisation in situ of incipient enamel lesions: influence of fluoride supplements. Caries Res 31:132–140

    Article  PubMed  Google Scholar 

  66. Feng Y, Yin W, Hu D, Zhang YP, Ellwood RP, Pretty IA (2007) Assessment of autofluorescence to detect the remineralization capabilities of sodium fluoride, monofluorophosphate and non-fluoride dentifrices. A single-blind cluster randomized trial. Caries Res 41:358–364. doi:10.1159/000104793

    Article  PubMed  Google Scholar 

  67. Karlsson L (2010) Caries detection methods based on changes in optical properties between healthy and carious tissue. Int J Dent 2010:270729. doi:10.1155/2010/270729

    Article  PubMed Central  PubMed  Google Scholar 

  68. Tranaeus S, Al-Khateeb S, Bjorkman S, Twetman S, Angmar-Mansson B (2001) Application of quantitative light-induced fluorescence to monitor incipient lesions in caries-active children. A comparative study of remineralisation by fluoride varnish and professional cleaning. Eur J Oral Sci 109:71–75

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterini Paschos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paschos, E., Galosi, T., Huth, K.C. et al. Do bonding agents protect the bracket-periphery?—Evaluation by consecutive μCT scans and fluorescence measurements. Clin Oral Invest 19, 159–168 (2015). https://doi.org/10.1007/s00784-014-1378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1378-z

Keywords

Navigation