Skip to main content

Advertisement

Log in

Bisphosphonates inhibit cell functions of HUVECs, fibroblasts and osteogenic cells via inhibition of protein geranylgeranylation

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Bisphosphonate-associated osteonecrosis of the jaw is a severe side effect in patients receiving nitrogen-containing bisphosphonates (N-BPs). One characteristic is its high recurrence rate; therefore, basic research for new therapeutic options is necessary. N-BPs inhibit the farnesylpyrophosphate synthase in the mevalonate pathway causing a depletion of the cellular geranylgeranyl pool, resulting in a constriction of essential functions of different cell lines. Geranylgeraniol (GGOH) has been proven to antagonise the negative biological in vitro effects of bisphosphonates.

Material and methods

This study analyses the influence of the isoprenoids eugenol, farnesol, R-limonene, menthol and squalene on different functions of zoledronate-treated human umbilicord vein endothelial cells (HUVEC), fibroblasts and osteogenic cells. In addition to the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl 2H-tetrazolium bromide (MTT) vitality test, the migration capacity was analysed by scratch wound assay and the morphological architecture of the treated cells by phallacidin staining.

Results

In contrast to GGOH, none of the other tested isoprenoids were able to prevent cells from having negative zoledronate effects.

Conclusions

Despite structural analogy to GGOH, the investigated isoprenoids are not able to prevent the N-BP effect. The negative impact of zoledronate on fibroblasts, HUVEC and osteogenic cells is due to inhibition of protein geranylgeranylation since the substitution of squalene and farnesyl did not have any effect on viability and wound healing capacity whereas GGOH did reduce the negative impact.

Clinical relevance

These data suggest the importance and exclusiveness of the mevalonate pathway intermediate GGOH as a potential therapeutic approach to bisphosphonate-associated osteonecrosis of the jaws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kuhl S, Walter C, Acham S, Pfeffer R, Lambrecht JT (2012) Bisphosphonate-related osteonecrosis of the jaws—a review. Oral Oncol 48(10):938–947. doi:10.1016/j.oraloncology.2012.03.028

    Article  PubMed  Google Scholar 

  2. Walter C, Al-Nawas B, du Bois A, Buch L, Harter P, Grotz KA (2009) Incidence of bisphosphonate-associated osteonecrosis of the jaws in breast cancer patients. Cancer 115(8):1631–1637. doi:10.1002/cncr.24119

    Article  PubMed  Google Scholar 

  3. Walter C, Al-Nawas B, Frickhofen N, Gamm H, Beck J, Reinsch L, Blum C, Grotz KA, Wagner W (2010) Prevalence of bisphosphonate associated osteonecrosis of the jaws in multiple myeloma patients. Head Face Med 6:11. doi:10.1186/1746-160X-6-11

    Article  PubMed Central  PubMed  Google Scholar 

  4. Walter C, Al-Nawas B, Grotz KA, Thomas C, Thuroff JW, Zinser V, Gamm H, Beck J, Wagner W (2008) Prevalence and risk factors of bisphosphonate-associated osteonecrosis of the jaw in prostate cancer patients with advanced disease treated with zoledronate. Eur Urol 54(5):1066–1072. doi:10.1016/j.eururo.2008.06.070

    Article  PubMed  Google Scholar 

  5. Walter C, Grotz KA, Kunkel M, Al-Nawas B (2007) Prevalence of bisphosphonate associated osteonecrosis of the jaw within the field of osteonecrosis. Support Care Cancer 15(2):197–202. doi:10.1007/s00520-006-0120-z

    Article  PubMed  Google Scholar 

  6. Mashiba T, Mori S, Burr DB, Komatsubara S, Cao Y, Manabe T, Norimatsu H (2005) The effects of suppressed bone remodeling by bisphosphonates on microdamage accumulation and degree of mineralization in the cortical bone of dog rib. J Bone Mineral Metab 23(Suppl):36–42

    Article  Google Scholar 

  7. Walter C, Klein MO, Pabst A, Al-Nawas B, Duschner H, Ziebart T (2010) Influence of bisphosphonates on endothelial cells, fibroblasts, and osteogenic cells. Clin Oral Investig 14(1):35–41. doi:10.1007/s00784-009-0266-4

    Article  PubMed  Google Scholar 

  8. Walter C, Pabst A, Ziebart T, Klein M, Al-Nawas B (2011) Bisphosphonates affect migration ability and cell viability of HUVEC, fibroblasts and osteoblasts in vitro. Oral Dis 17(2):194–199. doi:10.1111/j.1601-0825.2010.01720.x

    Article  PubMed  Google Scholar 

  9. Ziebart T, Pabst A, Klein MO, Kammerer P, Gauss L, Brullmann D, Al-Nawas B, Walter C (2011) Bisphosphonates: restrictions for vasculogenesis and angiogenesis: inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro. Clin Oral Investig 15(1):105–111. doi:10.1007/s00784-009-0365-2

    Article  PubMed  Google Scholar 

  10. Pabst AM, Ziebart T, Ackermann M, Konerding MA, Walter C (2013) Bisphosphonates’ antiangiogenic potency in the development of bisphosphonate-associated osteonecrosis of the jaws: influence on microvessel sprouting in an in vivo 3D Matrigel assay. Clin Oral Investig 18(3):1015–1022. doi:10.1007/s00784-013-1060-x

    Article  PubMed  Google Scholar 

  11. Pabst AM, Ziebart T, Koch FP, Taylor KY, Al-Nawas B, Walter C (2012) The influence of bisphosphonates on viability, migration, and apoptosis of human oral keratinocytes—in vitro study. Clin Oral Investig 16(1):87–93. doi:10.1007/s00784-010-0507-6

    Article  PubMed  Google Scholar 

  12. Walter C, Laux C, Sagheb K (2013) Radiologic bone loss in patients with bisphosphonate-associated osteonecrosis of the jaws: a case-control study. Clin Oral Investig 18(2):385–390. doi:10.1007/s00784-013-0974-7

    Article  PubMed  Google Scholar 

  13. Grötz KA, Piesold JU, Al-Nawas B (2012) S3-Leitlinie: Bisphosphonat-assoziierte Kiefernekrose (BP-ONJ) und andere Medikamenten-assoziierte Kiefernekrosen. Leitlinie der Deutschen Gesellschaft für Mund-, Kiefer- und Gesichtschirurgie. Accessed Dec. 2012

  14. Ziebart T, Koch F, Klein MO, Guth J, Adler J, Pabst A, Al-Nawas B, Walter C (2011) Geranylgeraniol—a new potential therapeutic approach to bisphosphonate associated osteonecrosis of the jaw. Oral Oncol 47(3):195–201. doi:10.1016/j.oraloncology.2010.12.003

    Article  PubMed  Google Scholar 

  15. Reszka AA, Rodan GA (2003) Mechanism of action of bisphosphonates. Curr Osteoporos Rep 1(2):45–52

    Article  PubMed  Google Scholar 

  16. Walker K, Olson MF (2005) Targeting Ras and Rho GTPases as opportunities for cancer therapeutics. Curr Opin Genet Dev 15(1):62–68. doi:10.1016/j.gde.2004.11.001

    Article  PubMed  Google Scholar 

  17. Virtanen SS, Vaananen HK, Harkonen PL, Lakkakorpi PT (2002) Alendronate inhibits invasion of PC-3 prostate cancer cells by affecting the mevalonate pathway. Cancer Res 62(9):2708–2714

    PubMed  Google Scholar 

  18. Casey PJ (1992) Biochemistry of protein prenylation. J Lipid Res 33(12):1731–1740

    PubMed  Google Scholar 

  19. Shipman CM, Croucher PI, Russell RG, Helfrich MH, Rogers MJ (1998) The bisphosphonate incadronate (YM175) causes apoptosis of human myeloma cells in vitro by inhibiting the mevalonate pathway. Cancer Res 58(23):5294–5297

    PubMed  Google Scholar 

  20. Marcuzzi A, Tommasini A, Crovella S, Pontillo A (2010) Natural isoprenoids inhibit LPS-induced-production of cytokines and nitric oxide in aminobisphosphonate-treated monocytes. Int Immunopharmacol 10(6):639–642. doi:10.1016/j.intimp.2010.03.008

    Article  PubMed  Google Scholar 

  21. Crick DC, Andres DA, Waechter CJ (1997) Novel salvage pathway utilizing farnesol and geranylgeraniol for protein isoprenylation. Biochem Biophys Res Commun 237(3):483–487. doi:10.1006/bbrc.1997.7145

    Article  PubMed  Google Scholar 

  22. Vogt A, Qian Y, McGuire TF, Hamilton AD, Sebti SM (1996) Protein geranylgeranylation, not farnesylation, is required for the G1 to S phase transition in mouse fibroblasts. Oncogene 13(9):1991–1999

    PubMed  Google Scholar 

  23. Van Beek ER, Lowik CW, Papapoulos SE (2002) Bisphosphonates suppress bone resorption by a direct effect on early osteoclast precursors without affecting the osteoclastogenic capacity of osteogenic cells: the role of protein geranylgeranylation in the action of nitrogen-containing bisphosphonates on osteoclast precursors. Bone 30(1):64–70

    Article  PubMed  Google Scholar 

  24. Nogawa M, Yuasa T, Kimura S, Kuroda J, Segawa H, Sato K, Yokota A, Koizumi M, Maekawa T (2005) Zoledronic acid mediates Ras-independent growth inhibition of prostate cancer cells. Oncol Res 15(1):1–9

    PubMed  Google Scholar 

  25. Guney E, Kisakol G, Ozgen AG, Yilmaz C, Kabalak T (2008) Effects of bisphosphonates on lipid metabolism. Neuroendocrinol Lett 29(2):252–255

    PubMed  Google Scholar 

  26. Dolder S, Hofstetter W, Wetterwald A, Muhlbauer RC, Felix R (2006) Effect of monoterpenes on the formation and activation of osteoclasts in vitro. J Bone Miner Res 21(4):647–655. doi:10.1359/jbmr.060111

    Article  PubMed  Google Scholar 

  27. Matura M, Goossens A, Bordalo O, Garcia-Bravo B, Magnusson K, Wrangsjo K, Karlberg AT (2002) Oxidized citrus oil (R-limonene): a frequent skin sensitizer in Europe. J Am Acad Dermatol 47(5):709–714

    Article  PubMed  Google Scholar 

  28. Pramod K, Ansari SH, Ali J (2010) Eugenol: a natural compound with versatile pharmacological actions. Nat Prod Commun 5(12):1999–2006

    PubMed  Google Scholar 

  29. Patel T, Ishiuji Y, Yosipovitch G (2007) Menthol: a refreshing look at this ancient compound. J Am Acad Dermatol 57(5):873–878. doi:10.1016/j.jaad.2007.04.008

    Article  PubMed  Google Scholar 

  30. Hagelauer N, Pabst AM, Ziebart T, Ulbrich H, Walter C (2014) In vitro effects of bisphosphonates on chemotaxis, phagocytosis, and oxidative burst of neutrophil granulocytes. Clin Oral Investig. doi:10.1007/s00784-014-1219-0

    Google Scholar 

  31. Crowell PL, Chang RR, Ren ZB, Elson CE, Gould MN (1991) Selective inhibition of isoprenylation of 21-26-kDa proteins by the anticarcinogen d-limonene and its metabolites. J Biol Chem 266(26):17679–17685

    PubMed  Google Scholar 

  32. Hardcastle IR, Rowlands MG, Barber AM, Grimshaw RM, Mohan MK, Nutley BP, Jarman M (1999) Inhibition of protein prenylation by metabolites of limonene. Biochem Pharmacol 57(7):801–809

    Article  PubMed  Google Scholar 

  33. Wang IK, Lin-Shiau SY, Lin JK (2000) Suppression of invasion and MMP-9 expression in NIH 3T3 and v-H-Ras 3T3 fibroblasts by lovastatin through inhibition of ras isoprenylation. Oncology 59(3):245–254

    Article  PubMed  Google Scholar 

  34. Holstein SA, Wohlford-Lenane CL, Hohl RJ (2002) Isoprenoids influence expression of Ras and Ras-related proteins. Biochemistry 41(46):13698–13704

    Article  PubMed  Google Scholar 

  35. Holstein SA, Hohl RJ (2003) Monoterpene regulation of Ras and Ras-related protein expression. J Lipid Res 44(6):1209–1215. doi:10.1194/jlr.M300057-JLR200

    Article  PubMed  Google Scholar 

  36. Peffley DM, Gayen AK (2003) Plant-derived monoterpenes suppress hamster kidney cell 3-hydroxy-3-methylglutaryl coenzyme a reductase synthesis at the post-transcriptional level. J Nutr 133(1):38–44

    PubMed  Google Scholar 

  37. Mo H, Elson CE (2004) Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp Biol Med (Maywood) 229(7):567–585

    Google Scholar 

  38. Muhlbauer RC, Lozano A, Palacio S, Reinli A, Felix R (2003) Common herbs, essential oils, and monoterpenes potently modulate bone metabolism. Bone 32(4):372–380

    Article  PubMed  Google Scholar 

  39. Thurnher M, Nussbaumer O, Gruenbacher G (2012) Novel aspects of mevalonate pathway inhibitors as antitumor agents. Clin Cancer Res 18(13):3524–3531. doi:10.1158/1078-0432.CCR-12-0489

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Walter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagelauer, N., Ziebart, T., Pabst, A.M. et al. Bisphosphonates inhibit cell functions of HUVECs, fibroblasts and osteogenic cells via inhibition of protein geranylgeranylation. Clin Oral Invest 19, 1079–1091 (2015). https://doi.org/10.1007/s00784-014-1320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1320-4

Keywords

Navigation