Clinical Oral Investigations

, Volume 19, Issue 4, pp 831–840 | Cite as

Influence of irradiation time on subsurface degree of conversion and microhardness of high-viscosity bulk-fill resin composites

  • Z. Tarle
  • T. Attin
  • D. Marovic
  • L. Andermatt
  • M. Ristic
  • T. T. Tauböck
Original Article



To evaluate the influence of irradiation time on degree of conversion (DC) and microhardness of high-viscosity bulk-fill resin composites in depths up to 6 mm.

Materials and methods

Four bulk-fill materials (Tetric EvoCeram Bulk Fill—TECBF; x-tra fil—XF; QuixFil—QF; SonicFill—SF) and one conventional nano-hybrid resin composite (Tetric EvoCeram—TEC) were irradiated for 10, 20, or 30 s at 1,170 mW/cm2. DC and Knoop microhardness (KHN) were recorded after 24-h dark storage at five depths: 0.1, 2, 4, 5, and 6 mm. Data were statistically analyzed using ANOVA and Bonferroni’s post-hoc test (α = 0.05).


With increasing bulk thickness, DC and KHN significantly decreased for TEC. TECBF and SF showed a significant decrease in DC and KHN at 4-mm depth after 10-s irradiation, but no decrease in DC after 30-s irradiation (p > 0.05). XF and QF demonstrated no significant DC decrease at depths up to 6 mm after irradiation of at least 20 s. At 4-mm depth, all materials tested achieved at least 80 % of their maximum DC value, irrespective of irradiation time. However, at the same depth (4 mm), only XF and QF irradiated for 30 s achieved at least 80 % of their maximum KHN value.


Regarding DC, the tested bulk-fill resin composites can be safely used up to at least 4-mm incremental thickness. However, with respect to hardness, only XF and QF achieved acceptable results at 4-mm depth with 30 s of irradiation.

Clinical relevance

Minimum irradiation times stated by the manufacturers cannot be recommended for placement of high-viscosity bulk-fill materials in 4-mm increments.


Bulk-fill resin composites Degree of conversion Microhardness Depth of cure Irradiation time 



This investigation was supported by the authors’ institutions and the Croatian Science Foundation. Dental companies Ivoclar Vivadent (Schaan, Liechtenstein) and Dentsply DeTrey (Konstanz, Germany) are gratefully acknowledged for the generous donation of the resin composite materials used in this study.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G (2013) Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater 29:139–156CrossRefPubMedGoogle Scholar
  2. 2.
    Roggendorf MJ, Kramer N, Appelt A, Naumann M, Frankenberger R (2011) Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. J Dent 39:643–647CrossRefPubMedGoogle Scholar
  3. 3.
    Ferracane JL (2011) Resin composite—state of the art. Dent Mater 27:29–38CrossRefPubMedGoogle Scholar
  4. 4.
    Flury S, Hayoz S, Peutzfeldt A, Husler J, Lussi A (2012) Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater 28:521–528CrossRefPubMedGoogle Scholar
  5. 5.
    Manhart J, Hickel R (2014) Bulk-fill-composites. Modern application technique of direct composites for posterior teeth. Swiss Dent J 124:19–37PubMedGoogle Scholar
  6. 6.
    Bucuta S, Ilie N (2014) Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin Oral Investig. doi:  10.1007/s00784-013-1177-y
  7. 7.
    Howard B, Wilson ND, Newman SM, Pfeifer CS, Stansbury JW (2010) Relationships between conversion, temperature and optical properties during composite photopolymerization. Acta Biomater 6:2053–2059CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Czasch P, Ilie N (2013) In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig 17:227–235CrossRefPubMedGoogle Scholar
  9. 9.
    Tauböck TT, Feilzer AJ, Buchalla W, Kleverlaan CJ, Krejci I, Attin T (2014) Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites. Eur J Oral Sci 122:293–302CrossRefPubMedGoogle Scholar
  10. 10.
    Ilie N, Hickel R (2011) Investigations on a methacrylate-based flowable composite based on the SDRTM technology. Dent Mater 27:348–355CrossRefPubMedGoogle Scholar
  11. 11.
    Van Ende A, De Munck J, Van Landuyt KL, Poitevin A, Peumans M, Van Meerbeek B (2013) Bulk-filling of high C-factor posterior cavities: effect on adhesion to cavity-bottom dentin. Dent Mater 29:269–277CrossRefPubMedGoogle Scholar
  12. 12.
    Finan L, Palin WM, Moskwa N, McGinley EL, Fleming GJ (2013) The influence of irradiation potential on the degree of conversion and mechanical properties of two bulk-fill flowable RBC base materials. Dent Mater 29:906–912CrossRefPubMedGoogle Scholar
  13. 13.
    Ilie N, Bucuta S, Draenert M (2013) Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent 38:618–625CrossRefPubMedGoogle Scholar
  14. 14.
    Alrahlah A, Silikas N, Watts DC (2014) Post-cure depth of cure of bulk fill dental resin-composites. Dent Mater 30:149–154CrossRefPubMedGoogle Scholar
  15. 15.
    Furness A, Tadros MY, Looney SW, Rueggeberg FA (2014) Effect of bulk/incremental fill on internal gap formation of bulk-fill composites. J Dent 42:439–449CrossRefPubMedGoogle Scholar
  16. 16.
    Goracci C, Cadenaro M, Fontanive L, Giangrosso G, Juloski J, Vichi A, Ferrari M (2014) Polymerization efficiency and flexural strength of low-stress restorative composites. Dent Mater 30:688–694CrossRefPubMedGoogle Scholar
  17. 17.
    Yoon TH, Lee YK, Lim BS, Kim CW (2002) Degree of polymerization of resin composites by different light sources. J Oral Rehabil 29:1165–1173CrossRefPubMedGoogle Scholar
  18. 18.
    Chung KH (1990) The relationship between composition and properties of posterior resin composites. J Dent Res 69:852–856CrossRefPubMedGoogle Scholar
  19. 19.
    Poskus LT, Placido E, Cardoso PE (2004) Influence of placement techniques on Vickers and Knoop hardness of class II composite resin restorations. Dent Mater 20:726–732CrossRefPubMedGoogle Scholar
  20. 20.
    Sigusch BW, Pflaum T, Volpel A, Gretsch K, Hoy S, Watts DC, Jandt KD (2012) Resin-composite cytotoxicity varies with shade and irradiance. Dent Mater 28:312–319CrossRefPubMedGoogle Scholar
  21. 21.
    Miletic V, Santini A (2012) Optimizing the concentration of 2,4,6-trimethylbenzoyldiphenylphosphine oxide initiator in composite resins in relation to monomer conversion. Dent Mater J 31:717–723CrossRefPubMedGoogle Scholar
  22. 22.
    Turssi CP, Ferracane JL, Vogel K (2005) Filler features and their effects on wear and degree of conversion of particulate dental resin composites. Biomaterials 26:4932–4937CrossRefPubMedGoogle Scholar
  23. 23.
    Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G, Davidson CL (1998) The effect of the photopolymerization method on the quality of composite resin samples. J Oral Rehabil 25:436–442CrossRefPubMedGoogle Scholar
  24. 24.
    Uctasli S, Tezvergil A, Lassila LV, Vallittu PK (2005) The degree of conversion of fiber-reinforced composites polymerized using different light-curing sources. Dent Mater 21:469–475CrossRefPubMedGoogle Scholar
  25. 25.
    Ferracane JL, Greener EH (1984) Fourier transform infrared analysis of degree of polymerization in unfilled resins—methods comparison. J Dent Res 63:1093–1095CrossRefPubMedGoogle Scholar
  26. 26.
    Pianelli C, Devaux J, Bebelman S, Leloup G (1999) The micro-Raman spectroscopy, a useful tool to determine the degree of conversion of light-activated composite resins. J Biomed Mater Res 48:675–681CrossRefPubMedGoogle Scholar
  27. 27.
    Stansbury JW, Dickens SH (2001) Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent Mater 17:71–79CrossRefPubMedGoogle Scholar
  28. 28.
    Ferracane JL (1985) Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater 1:11–14CrossRefPubMedGoogle Scholar
  29. 29.
    Asmussen E (1982) Restorative resins: hardness and strength vs. quantity of remaining double bonds. Scand J Dent Res 90:484–489PubMedGoogle Scholar
  30. 30.
    Cohen ME, Leonard DL, Charlton DG, Roberts HW, Ragain JC (2004) Statistical estimation of resin composite polymerization sufficiency using microhardness. Dent Mater 20:158–166CrossRefPubMedGoogle Scholar
  31. 31.
    Soh MS, Yap AU, Siow KS (2003) The effectiveness of cure of LED and halogen curing lights at varying cavity depths. Oper Dent 28:707–715PubMedGoogle Scholar
  32. 32.
    Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G (1995) Polymerization of composites using pulsed laser. Eur J Oral Sci 103:394–398CrossRefPubMedGoogle Scholar
  33. 33.
    Rueggeberg FA, Hashinger DT, Fairhurst CW (1990) Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent Mater 6:241–249CrossRefPubMedGoogle Scholar
  34. 34.
    Tauböck TT, Oberlin H, Buchalla W, Roos M, Attin T (2011) Comparing the effectiveness of self-curing and light curing in polymerization of dual-cured core buildup materials. J Am Dent Assoc 142:950–956CrossRefPubMedGoogle Scholar
  35. 35.
    Tauböck TT, Buchalla W, Hiltebrand U, Roos M, Krejci I, Attin T (2011) Influence of the interaction of light- and self-polymerization on subsurface hardening of a dual-cured core build-up resin composite. Acta Odontol Scand 69:41–47CrossRefPubMedGoogle Scholar
  36. 36.
    Polydorou O, Manolakis A, Hellwig E, Hahn P (2008) Evaluation of the curing depth of two translucent composite materials using a halogen and two LED curing units. Clin Oral Investig 12:45–51CrossRefPubMedGoogle Scholar
  37. 37.
    Cramer NB, Stansbury JW, Bowman CN (2011) Recent advances and developments in composite dental restorative materials. J Dent Res 90:402–416CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Rueggeberg FA (2011) State-of-the-art: Dental photocuring—a review. Dent Mater 27:39–52CrossRefPubMedGoogle Scholar
  39. 39.
    Leloup G, Holvoet PE, Bebelman S, Devaux J (2002) Raman scattering determination of the depth of cure of light-activated composites: influence of different clinically relevant parameters. J Oral Rehabil 29:510–515CrossRefPubMedGoogle Scholar
  40. 40.
    Jakubiak J, Allonas X, Fouassier JP, Sionkowska A, Andrzejewska E, Linden LA (2003) Camphorquinone–amines photoinitiating systems for the initiation of free radical polymerization. Polymer 44:5219–5226CrossRefGoogle Scholar
  41. 41.
    Neshchadin D, Rosspeintner A, Griesser M, Lang B, Mosquera-Vazquez S, Vauthey E, Gorelik V, Liska R, Hametner C, Ganster B, Saf R, Moszner N, Gescheidt G (2013) Acylgermanes: photoinitiators and sources for Ge-centered radicals. Insights into their reactivity. J Am Chem Soc 135:17314–17321CrossRefPubMedGoogle Scholar
  42. 42.
    Leprince JG, Hadis M, Shortall AC, Ferracane JL, Devaux J, Leloup G, Palin WM (2011) Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dent Mater 27:157–164CrossRefPubMedGoogle Scholar
  43. 43.
    Ogunyinka A, Palin WM, Shortall AC, Marquis PM (2007) Photoinitiation chemistry affects light transmission and degree of conversion of curing experimental dental resin composites. Dent Mater 23:807–813CrossRefPubMedGoogle Scholar
  44. 44.
    Neumann MG, Schmitt CC, Ferreira GC, Correa IC (2006) The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dent Mater 22:576–584CrossRefPubMedGoogle Scholar
  45. 45.
    Decker C (2002) Kinetic study and new applications of UV radiation curing. Macromol Rapid Commun 23:1067–1093CrossRefGoogle Scholar
  46. 46.
    Moszner N, Fischer UK, Ganster B, Liska R, Rheinberger V (2008) Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater 24:901–907CrossRefPubMedGoogle Scholar
  47. 47.
    Tauböck TT, Bortolotto T, Buchalla W, Attin T, Krejci I (2010) Influence of light-curing protocols on polymerization shrinkage and shrinkage force of a dual-cured core build-up resin composite. Eur J Oral Sci 118:423–429CrossRefPubMedGoogle Scholar
  48. 48.
    Scotti N, Venturello A, Migliaretti G, Pera F, Pasqualini D, Geobaldo F, Berutti E (2011) New-generation curing units and short irradiation time: the degree of conversion of microhybrid composite resin. Quintessence Int 42:e89–95PubMedGoogle Scholar
  49. 49.
    Yap AU (2000) Effectiveness of polymerization in composite restoratives claiming bulk placement: impact of cavity depth and exposure time. Oper Dent 25:113–120PubMedGoogle Scholar
  50. 50.
    Azzopardi N, Moharamzadeh K, Wood DJ, Martin N, van Noort R (2009) Effect of resin matrix composition on the translucency of experimental dental composite resins. Dent Mater 25:1564–1568CrossRefPubMedGoogle Scholar
  51. 51.
    Garcia D, Yaman P, Dennison J, Neiva G (2014) Polymerization shrinkage and depth of cure of bulk fill flowable composite resins. Oper Dent 39:441–448CrossRefPubMedGoogle Scholar
  52. 52.
    Garoushi S, Sailynoja E, Vallittu PK, Lassila L (2013) Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater 29:835–841CrossRefPubMedGoogle Scholar
  53. 53.
    Truffier-Boutry D, Demoustier-Champagne S, Devaux J, Biebuyck JJ, Mestdagh M, Larbanois P, Leloup G (2006) A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent Mater 22:405–412CrossRefPubMedGoogle Scholar
  54. 54.
    Price RB, Whalen JM, Price TB, Felix CM, Fahey J (2011) The effect of specimen temperature on the polymerization of a resin-composite. Dent Mater 27:983–989CrossRefPubMedGoogle Scholar
  55. 55.
    Stansbury JW (2012) Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions. Dent Mater 28:13–22CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Skrtic D, Antonucci JM (2007) Effect of chemical structure and composition of the resin phase on vinyl conversion of amorphous calcium phosphate-filled composites. Polym Int 56:497–505CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Manhart J, Chen HY, Hickel R (2001) The suitability of packable resin-based composites for posterior restorations. J Am Dent Assoc 132:639–645CrossRefPubMedGoogle Scholar
  58. 58.
    Rueggeberg FA, Craig RG (1988) Correlation of parameters used to estimate monomer conversion in a light-cured composite. J Dent Res 67:932–937CrossRefPubMedGoogle Scholar
  59. 59.
    DeWald JP, Ferracane JL (1987) A comparison of four modes of evaluating depth of cure of light-activated composites. J Dent Res 66:727–730CrossRefPubMedGoogle Scholar
  60. 60.
    Uhl A, Michaelis C, Mills RW, Jandt KD (2004) The influence of storage and indenter load on the Knoop hardness of dental composites polymerized with LED and halogen technologies. Dent Mater 20:21–28CrossRefPubMedGoogle Scholar
  61. 61.
    Erickson RL, Barkmeier WW (2014) Curing characteristics of a composite. Part 2: the effect of curing configuration on depth and distribution of cure. Dent Mater 30:e134–45CrossRefPubMedGoogle Scholar
  62. 62.
    Moore BK, Platt JA, Borges G, Chu TM, Katsilieri I (2008) Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent 33:408–412CrossRefPubMedGoogle Scholar
  63. 63.
    Soh MS, Yap AU (2004) Influence of curing modes on crosslink density in polymer structures. J Dent 32:321–326CrossRefPubMedGoogle Scholar
  64. 64.
    Tauböck TT, Zehnder M, Schweizer T, Stark WJ, Attin T, Mohn D (2014) Functionalizing a dentin bonding resin to become bioactive. Dent Mater 30:868–875CrossRefPubMedGoogle Scholar
  65. 65.
    Marovic D, Panduric V, Tarle Z, Ristic M, Sariri K, Demoli N, Klaric E, Jankovic B, Prskalo K (2013) Degree of conversion and microhardness of dental composite resin materials. J Mol Str 1044:299–302CrossRefGoogle Scholar
  66. 66.
    Frauscher KE, Ilie N (2012) Depth of cure and mechanical properties of nano-hybrid resin-based composites with novel and conventional matrix formulation. Clin Oral Investig 16:1425–1434CrossRefPubMedGoogle Scholar
  67. 67.
    Leprince JG, Leveque P, Nysten B, Gallez B, Devaux J, Leloup G (2012) New insight into the "depth of cure" of dimethacrylate-based dental composites. Dent Mater 28:512–520CrossRefPubMedGoogle Scholar
  68. 68.
    Onose H, Sano H, Kanto H, Ando S, Hasuike T (1985) Selected curing characteristics of light-activated composite resins. Dent Mater 1:48–54CrossRefPubMedGoogle Scholar
  69. 69.
    Bouschlicher MR, Rueggeberg FA, Wilson BM (2004) Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent 29:698–704PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Z. Tarle
    • 1
  • T. Attin
    • 2
  • D. Marovic
    • 1
  • L. Andermatt
    • 2
  • M. Ristic
    • 3
  • T. T. Tauböck
    • 2
  1. 1.Department of Endodontics and Restorative Dentistry, School of Dental MedicineUniversity of ZagrebZagrebCroatia
  2. 2.Department of Preventive Dentistry, Periodontology and Cariology, Center for Dental MedicineUniversity of ZurichZurichSwitzerland
  3. 3.Laboratory for Synthesis of New Materials, Division of Materials ChemistryInstitute Rudjer BoskovicZagrebCroatia

Personalised recommendations