Skip to main content

Advertisement

Log in

Saliva substitutes in combination with high-fluoride gel on dentin remineralization

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

This study aimed to determine whether the application of a high-fluoride gel could increase the remineralization of subsurface dentin lesions stored in saliva substitutes.

Materials and methods

Demineralized bovine dentin specimens were stored in mineral water (W), Glandosane (G), or modified Saliva natura (SN). Different treatments were applied twice daily: no treatment, Elmex sensitive mouth rinse (E), ProSchmelz gel (P), Duraphat toothpaste (D), ED, PD, and EPD. Differences in mineral loss were evaluated by transversal microradiography after 2 and 5 weeks.

Results

The treatments with E, D, and ED inhibited the mineral loss induced by G and enabled some mineral gain. ProSchmelz was not able to inhibit the demineralizing effect of G. This high-fluoride gel induced an erosive mineral loss in combination with G. The use of ProSchmelz in combination or not with other fluoride products did not increase remineralization of specimens stored in SN or W (p > 0.05). ProSchmelz resulted in an erosion of the specimens stored in W and revealed a lower mineralized surface layer of specimens stored in SN.

Conclusion

Topical application of high-fluoride gel reduced the mineral loss induced by G but resulted in an erosion of specimens’ surface. In addition, ProSchmelz did not demonstrate beneficial effects in combination with SN on subsurface dentin lesion remineralization.

Clinical relevance

Within the limitations of an in vitro study, it was concluded that the application of a high-fluoride gel did not promote additional effects on remineralization of subsurface dentin lesions in combination with saliva substitutes when compared to products with lower fluoride concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tschoppe P, Wolgin M, Pischon N, Kielbassa AM (2010) Etiologic factors of hyposalivation and consequences for oral health. Quintessence Int 41:321–333. doi:10.1159/000302901

    PubMed  Google Scholar 

  2. Vissink A, Jansma J, Spijkervet FK, Burlage FR, Coppes RP (2003) Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med 14:199–212

    Article  PubMed  Google Scholar 

  3. Kielbassa AM, Hinkelbein W, Hellwig E, Meyer-Lückel H (2006) Radiation-related damage to dentition. Lancet Oncol 7:326–335

    Article  PubMed  Google Scholar 

  4. Hahnel S, Behr M, Handel G, Bürgers R (2009) Saliva substitutes for the treatment of radiation-induced xerostomia—a review. Support Care Cancer 17:1331–1343. doi:10.1007/s00520-009-0671-x

    Article  PubMed  Google Scholar 

  5. Nieuw Amerongen AV, Veerman EC (2003) Current therapies for xerostomia and salivary gland hypofunction associated with cancer therapies. Support Care Cancer 11:226–231

    PubMed  Google Scholar 

  6. Momm F, Volegova-Neher NJ, Schulte-Mönting J, Guttenberger R (2005) Different saliva substitutes for treatment of xerostomia following radiotherapy. A prospective crossover study. Strahlenther Onkol 181:231–236

    Article  PubMed  Google Scholar 

  7. Kielbassa AM, Shohadai SP, Schulte-Mönting J (2001) Effect of saliva substitutes on mineral content of demineralized and sound dental enamel. Support Care Cancer 9:40–47

    Article  PubMed  Google Scholar 

  8. Meyer-Lueckel H, Schulte-Mönting J, Kielbassa AM (2002) The effect of commercially available saliva substitutes on predemineralized bovine dentin in vitro. Oral Dis 8:192–198

    Article  PubMed  Google Scholar 

  9. Smith G, Smith AJ, Shaw L, Shaw MJ (2001) Artificial saliva substitutes and mineral dissolution. J Oral Rehabil 28:728–731

    Article  PubMed  Google Scholar 

  10. Meyer-Lueckel H, Kielbassa AM (2006) Influence of calcium phosphates added to mucin-based saliva substitutes on bovine dentin. Quintessence Int 37:537–544

    Google Scholar 

  11. Tschoppe P, Kielbassa AM, Toll R, Meyer-Lueckel H (2009) Modification of the mineralizing capacity of a saliva substitute (saliva natura) on enamel in vitro. Laryngorhinootologie 88:717–722. doi:10.1055/s-0029-1224107

    Article  PubMed  Google Scholar 

  12. Spak CJ, Johnson G, Ekstrand J (1994) Caries incidence, salivary flow rate and efficacy of fluoride gel treatment in irradiated patients. Caries Res 28:388–393

    Article  PubMed  Google Scholar 

  13. Meyerowitz C, Featherstone JD, Billings RJ, Eisenberg AD, Fu J, Shariati M et al (1991) Use of an intra-oral model to evaluate 0.05 % sodium fluoride mouthrinse in radiation-induced hyposalivation. J Dent Res 70:894–898

    Article  PubMed  Google Scholar 

  14. Papas A, Russell D, Singh M, Kent R, Triol C, Winston A (2008) Caries clinical trial of a remineralising toothpaste in radiation patients. Gerodontology 25:76–88. doi:10.1111/j.1741-2358.2007.00199.x

    Article  PubMed  Google Scholar 

  15. Zandim DL, Tschoppe P, Sampaio JE, Kielbassa AM (2011) Effect of saliva substitutes in combination with fluorides on remineralization of subsurface dentin lesions. Support Care Cancer 19:1143–1149. doi:10.1007/s00520-010-0924-8

    Article  PubMed  Google Scholar 

  16. Tschoppe P, Zandim DL, Sampaio JE, Kielbassa AM (2010) Saliva substitute in combination with high-concentrated fluoride toothpaste: effects on demineralised dentin in vitro. J Dent 38:207–213. doi:10.1016/j.jdent.2009.10.005

    Article  PubMed  Google Scholar 

  17. Shellis RP (1988) A microcomputer program to evaluate the saturation of complex solutions with respect to biominerals. Comput Appl Biosci 4:373–379

    PubMed  Google Scholar 

  18. Meyer-Lueckel H, Cölfen H, Verch A, Tschoppe P (2010) Effects of carbmethyl cellulose-based saliva substitutes with varying degrees of saturation with respect to calcium phosphates on artificial enamel lesions. Caries Res 44:127–134

  19. Ruben J, Arends J (1993) Shrinkage prevention of in vitro demineralized human dentine in transversal microradiography. Caries Res 27:262–265

    Article  PubMed  Google Scholar 

  20. Backfolk K, Lagerge S, Rosenholm JB, Eklund D (2002) Aspects on the interaction between sodium carboxymethylcellulose and calcium carbonate and the relationship to specific site adsorption. J Colloid Interface Sci 248:5–12

    Article  PubMed  Google Scholar 

  21. McCracken MS, Haywood VB (1995) Effects of 10 % carbamide peroxide on the subsurface hardness of enamel. Quintessence Int 26:21–24

    Article  Google Scholar 

  22. Basting RT, Rodrigues ALJ, Serra MC (2003) The effects of seven carbamide peroxide bleaching agents on enamel microhardness over time. J Am Dent Assoc 134:1335–1342

    Article  PubMed  Google Scholar 

  23. Basting RT, Rodrigues AL Jr, Serra MC (2005) The effect of 10 % carbamide peroxide, carbopol and/or glycerin on enamel and dentin microhardness. Oper Dent 30:608–616

    PubMed  Google Scholar 

  24. Vissink A, Burlage FR, Spijkervet FK, Veerman EC, Nieuw Amerongen AV (2004) Prevention and treatment of salivary gland hypofunction related to head and neck radiation therapy and chemotherapy. Support Cancer Ther 1:111–118. doi:10.3816/SCT.2004.n.004

    Article  PubMed  Google Scholar 

  25. Schemehorn BR, Orban JC, Wood GD, Fischer GM, Winston AE (1999) Remineralization by fluoride enhanced with calcium and phosphate ingredients. J Clin Dent 10:13–16

    PubMed  Google Scholar 

  26. Tschoppe P, Meyer-Lueckel H (2011) Mineral distribution of artificial dentinal caries lesions after treatment with fluoride agents in combination with saliva substitutes. Arch Oral Biol 56:775–784. doi:10.1016/j.archoralbio.2011.01.002

    Article  PubMed  Google Scholar 

  27. Kawasaki K, Ruben J, Tsuda H, Huysmans MC, Takagi O (2000) Relationship between mineral distributions in dentine lesions and subsequent remineralization in vitro. Caries Res 34:395–403

    Article  PubMed  Google Scholar 

  28. Christoffersen J, Christoffersen MR, Kibalczyc W, Perdok WG (1988) Kinetics of dissolution and growth of calcium fluoride and effects of phosphate. Acta Odontol Scand 46:325–336

    Article  PubMed  Google Scholar 

  29. Chander S, Chiao CC, Fuerstenau DW (1982) Transformation of calcium fluoride for caries prevention. J Dent Res 61:403–407

    Article  PubMed  Google Scholar 

  30. Tschoppe P, Meyer-Lueckel H, Toll R, Kielbassa AM (2007) In vitro analysis of an new saliva substitute (Saliva natura) on enamel and dentin. Laryngorhinootologie 86:723–727

    Article  PubMed  Google Scholar 

  31. Larsen MJ, Pearce EI (2003) Saturation of human saliva with respect to calcium salts. Arch Oral Biol 48:317–322

    Article  PubMed  Google Scholar 

  32. Gelhard TB, Fidler V, s-Gravenmade EJ, Vissink A (1983) Remineralization of softened human enamel in mucin- or CMC-containing artificial salivas. J Oral Pathol 12:336–341

    Article  PubMed  Google Scholar 

  33. Vissink A, Gravenmade EJ, Gelhard TB, Panders AK, Franken MH (1985) Rehardening properties of mucin- or CMC-containing saliva substitutes on softened human enamel. Effects of sorbitol, xylitol and increasing viscosity. Caries Res 19:212–218

    Article  PubMed  Google Scholar 

  34. Damato FA, Strang R, Stephen KW (1990) Effect of fluoride concentration on remineralization of carious enamel: an in vitro pH-cycling study. Caries Res 24:174–180

    Article  PubMed  Google Scholar 

  35. Baysan A, Lynch E, Ellwood R, Davies R, Petersson L, Borsboom P (2001) Reversal of primary root caries using dentifrices containing 5,000 and 1,100 ppm fluoride. Caries Res 35:41–46

    Article  PubMed  Google Scholar 

  36. Ruissen AL, Groenink J, Lommerse CH, Van’t Hof W, Veerman EC, Nieuw Amerongen AV (2002) Effects of carbohydrate polymers applicable in saliva substitutes on the anti-Candida activity of a histatin-derived peptide. Arch Oral Biol 47:749–756

    Article  PubMed  Google Scholar 

  37. Epstein JB, van der Meij EH, Lunn R, Stevenson-Moore P (1996) Effects of compliance with fluoride gel application on caries and caries risk in patients after radiation therapy for head and neck cancer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 82:268–275

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brasília, DF, Brazil) and Forschungsgemeinschaft Dental e.V. (Cologne, Germany) for providing financial support and Mr. Rainer Toll (Charité - Universitätsmedizin Berlin) for his technical support during the laboratory work. Experiments have been conducted at the Department of Operative Dentistry and Periodontology (Charité - Universitätsmedizin Berlin), which is greatly acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Tschoppe.

Additional information

Daniela Leal Zandim-Barcelos and Peter Tschoppe contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 31 kb)

ESM 2

(PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zandim-Barcelos, D.L., Kielbassa, A.M., Sampaio, J.E.C. et al. Saliva substitutes in combination with high-fluoride gel on dentin remineralization. Clin Oral Invest 19, 289–297 (2015). https://doi.org/10.1007/s00784-014-1264-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1264-8

Keywords

Navigation