Skip to main content

Advertisement

Log in

Synchrotron light-based μCT to analyse the presence of dentinal microcracks post-rotary and reciprocating NiTi instrumentation

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this study was to determine in vitro using a synchrotron radiation-based μCT (SRCT) whether rotary and reciprocating nickel titanium (NiTi) instrumentations lead to the formation of dentine microcracks.

Material and methods

Fourteen extracted human molars were obtained with ethical approval. Seven distobuccal roots of the maxillary molars and seven mesial roots of the mandibular molars were assigned to two experimental groups: (A) prepared with rotary Pro Taper instrumentation (n = 6) and (B) reciprocating WaveOne (n = 6). Irrigation with 1 % NaOCl and 17 % EDTA solutions was carried out. The remaining roots served as positive control with induced fractures (group C). SRCT was used to scan all samples pre and post-operatively. An imaging software was used to determine the number and length of microcracks. Statistical analyses weighed differences between pre and post-instrumentation and between shaping methods.

Results

A significant increase in the number and length of microcracks was detected post-shaping. No significant difference between rotary and reciprocating instrumentation was observed.

Conclusions

Within the limitations of this in vitro study, an increased number and length of microcracks was induced by mechanical instrumentation. Reciprocating and rotary instrumentation are similar in terms of effect.

Clinical significance

Dentinal damage may occur following rotary and reciprocating instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bier CA, Shemesh H, Tanomaru-Filho M, Wesselink PR, Wu MK (2009) The ability of different nickel-titanium rotary instruments to induce dentinal damage during canal preparation. J Endod 35(2):236–238. doi:10.1016/j.joen.2008.10.021

    Article  PubMed  Google Scholar 

  2. Shemesh H, Roeleveld AC, Wesselink PR, Wu MK (2011) Damage to root dentin during retreatment procedures. J Endod 37(1):63–66. doi:10.1016/j.joen.2010.10.002

    Article  PubMed  Google Scholar 

  3. Shemesh H, Bier CA, Wu MK, Tanomaru-Filho M, Wesselink PR (2009) The effects of canal preparation and filling on the incidence of dentinal defects. Int Endod J 42(3):208–213. doi:10.1111/j.1365-2591.2008.01502.x

    Article  PubMed  Google Scholar 

  4. Kim HC, Lee MH, Yum J, Versluis A, Lee CJ, Kim BM (2010) Potential relationship between design of nickel-titanium rotary instruments and vertical root fracture. J Endod 36(7):1195–1199. doi:10.1016/j.joen.2010.02.010

    Article  PubMed  Google Scholar 

  5. Wilcox LR, Roskelley C, Sutton T (1997) The relationship of root canal enlargement to finger-spreader induced vertical root fracture. J Endod 23(8):533–534. doi:10.1016/S0099-2399(97)80316-0

    Article  PubMed  Google Scholar 

  6. Shemesh H, Wesselink PR, Wu MK (2010) Incidence of dentinal defects after root canal filling procedures. Int Endod J 43(11):995–1000. doi:10.1111/j.1365-2591.2010.01740.x

    Article  PubMed  Google Scholar 

  7. Adorno CG, Yoshioka T, Jindan P, Kobayashi C, Suda H (2013) The effect of endodontic procedures on apical crack initiation and propagation ex vivo. Int Endod J 46(8):763–768. doi:10.1111/iej.12056

    Article  PubMed  Google Scholar 

  8. Zaslansky P, Fratzl P, Rack A, Wu MK, Wesselink PR, Shemesh H (2011) Identification of root filling interfaces by microscopy and tomography methods. Int Endod J 44(5):395–401. doi:10.1111/j.1365-2591.2010.01830.x

    Article  PubMed  Google Scholar 

  9. Moore J, Fitz-Walter P, Parashos P (2009) A micro-computed tomographic evaluation of apical root canal preparation using three instrumentation techniques. Int Endod J 42(12):1057–1064. doi:10.1111/j.1365-2591.2009.01626.x

    Article  PubMed  Google Scholar 

  10. Paque F, Laib A, Gautschi H, Zehnder M (2009) Hard-tissue debris accumulation analysis by high-resolution computed tomography scans. J Endod 35(7):1044–1047. doi:10.1016/j.joen.2009.04.026

    Article  PubMed  Google Scholar 

  11. Hubscher W, Barbakow F, Peters OA (2003) Root-canal preparation with FlexMaster: canal shapes analysed by micro-computed tomography. Int Endod J 36(11):740–747

    Article  PubMed  Google Scholar 

  12. Peters OA, Schonenberger K, Laib A (2001) Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J 34(3):221–230

    Article  PubMed  Google Scholar 

  13. Rhodes JS, Ford TR, Lynch JA, Liepins PJ, Curtis RV (2000) A comparison of two nickel-titanium instrumentation techniques in teeth using microcomputed tomography. Int Endod J 33(3):279–285

    Article  PubMed  Google Scholar 

  14. Ikram OH, Patel S, Sauro S, Mannocci F (2009) Micro-computed tomography of tooth tissue volume changes following endodontic procedures and post space preparation. Int Endod J 42(12):1071–1076. doi:10.1111/j.1365-2591.2009.01632.x

    Article  PubMed  Google Scholar 

  15. Paque F, Ganahl D, Peters OA (2009) Effects of root canal preparation on apical geometry assessed by micro-computed tomography. J Endod 35(7):1056–1059. doi:10.1016/j.joen.2009.04.020

    Article  PubMed  Google Scholar 

  16. Endal U, Shen Y, Knut A, Gao Y, Haapasalo M (2011) A high-resolution computed tomographic study of changes in root canal isthmus area by instrumentation and root filling. J Endod 37(2):223–227. doi:10.1016/j.joen.2010.10.012

    Article  PubMed  Google Scholar 

  17. Fayyad DM, Elhakim Elgendy AA (2011) Cutting efficiency of twisted versus machined nickel-titanium endodontic files. J Endod 37(8):1143–1146. doi:10.1016/j.joen.2011.03.036

    Article  PubMed  Google Scholar 

  18. Jung M, Lommel D, Klimek J (2005) The imaging of root canal obturation using micro-CT. Int Endod J 38(9):617–626. doi:10.1111/j.1365-2591.2005.00990.x

    Article  PubMed  Google Scholar 

  19. Nielsen RB, Alyassin AM, Peters DD, Carnes DL, Lancaster J (1995) Microcomputed tomography: an advanced system for detailed endodontic research. J Endod 21(11):561–568. doi:10.1016/S0099-2399(06)80986-6

    Article  PubMed  Google Scholar 

  20. Betz O, Wegst U, Weide D, Heethoff M, Helfen L, Lee WK, Cloetens P (2007) Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. J Microsc 227(Pt 1):51–71. doi:10.1111/j.1365-2818.2007.01785.x

    Article  PubMed  Google Scholar 

  21. Rigon L, Astolfo A, Arfelli F, Menk RH (2008) Generalized diffraction enhanced imaging: application to tomography. Eur J Radiol 68(3 Suppl):S3–S7. doi:10.1016/j.ejrad.2008.04.026

    Article  PubMed  Google Scholar 

  22. Yared G (2008) Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. Int Endod J 41(4):339–344. doi:10.1111/j.1365-2591.2007.01351.x

    Article  PubMed  Google Scholar 

  23. Berutti E, Paolino DS, Chiandussi G, Alovisi M, Cantatore G, Castellucci A, Pasqualini D (2012) Root canal anatomy preservation of WaveOne reciprocating files with or without glide path. J Endod 38(1):101–104. doi:10.1016/j.joen.2011.09.030

    PubMed  Google Scholar 

  24. Patel S, Brady E, Wilson R, Brown J, Mannocci F (2013) The detection of vertical root fractures in root filled teeth with periapical radiographs and CBCT scans. Int Endod J. doi:10.1111/iej.12109

    Google Scholar 

  25. Yoldas O, Yilmaz S, Atakan G, Kuden C, Kasan Z (2012) Dentinal microcrack formation during root canal preparations by different NiTi rotary instruments and the self-adjusting file. J Endod 38(2):232–235. doi:10.1016/j.joen.2011.10.011

    Article  PubMed  Google Scholar 

  26. Pirani C, Ruggeri O, Cirulli PP, Pelliccioni GA, Gandolfi MG, Prati C (2013) Metallurgical analysis and fatigue resistance of WaveOne and ProTaper nickel-titanium instruments. Odontology. doi:10.1007/s10266-013-0113-6

    Google Scholar 

  27. Carpinteri A (1994) Handbook of fatigue crack propagation in metallic structures. Elsevier, Amsterdam

    Google Scholar 

  28. Adorno CG, Yoshioka T, Suda H (2010) The effect of working length and root canal preparation technique on crack development in the apical root canal wall. Int Endod J 43(4):321–327. doi:10.1111/j.1365-2591.2010.01684.x

    Article  PubMed  Google Scholar 

  29. Adorno CG, Yoshioka T, Suda H (2009) The effect of root preparation technique and instrumentation length on the development of apical root cracks. J Endod 35(3):389–392. doi:10.1016/j.joen.2008.12.008

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors deny any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Foschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pop, I., Manoharan, A., Zanini, F. et al. Synchrotron light-based μCT to analyse the presence of dentinal microcracks post-rotary and reciprocating NiTi instrumentation. Clin Oral Invest 19, 11–16 (2015). https://doi.org/10.1007/s00784-014-1206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1206-5

Keywords

Navigation