Clinical Oral Investigations

, Volume 18, Issue 8, pp 2001–2013 | Cite as

In vitro activity of Carvacrol against titanium-adherent oral biofilms and planktonic cultures

  • Eleonora Ciandrini
  • Raffaella Campana
  • Sara Federici
  • Anita Manti
  • Michela Battistelli
  • Elisabetta Falcieri
  • Stefano Papa
  • Wally BaffoneEmail author
Original Article



The aim of this study was to test the effect of Carvacrol against oral pathogens and their preformed biofilms on titanium disc surface.


Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and biofilm inhibitory concentration (BIC) were performed to evaluate Carvacrol antibacterial activity, while flow cytometry (FCM) was used to verify the Carvacrol effect on esterase activity and membrane permeability. Carvacrol was tested in vitro on single- and multi-species biofilms formed on titanium disc by Streptococcus mutans ATCC 25175, Porphyromonas gingivalis ATCC 33277 or Fusobacterium nucleatum ATCC 25586, in different combinations, comparing its effect to that of chlorhexidine.


The pathogens were sensitive to Carvacrol with MICs and MBCs values of 0.25 % and 0.50 % and BICs of 0.5 % for S. mutans ATCC 25175 and 1 % for P. gingivalis ATCC 33277 and F. nucleatum ATCC 25586. FCM analysis showed that treatment of planktonic cultures with Carvacrol caused an increase of damaged cells and a decrement of bacteria with active esterase activity. Moreover, Carvacrol demonstrated greater biofilm formation preventive property compared to chlorhexidine against titanium-adherent single- and multi-specie biofilms, with statistically significant values.


Carvacrol showed inhibitory activity against the tested oral pathogens and biofilm formation preventive property on their oral biofilm; then, it could be utilized to control and prevent the colonization of microorganisms with particular significance in human oral diseases.

Clinical relevance

This natural compound may be proposed in daily hygiene formulations or as an alternative agent supporting traditional antimicrobial protocols to prevent periodontal diseases in implanted patients.


Carvacrol Oral pathogens Titanium Biofilms Flow cytometry TEM 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Aeschbach R, Loliger J, Scott BC, Murcia A, Butler J, Halliwell B, Aruoma OI (1994) Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 32:31–36PubMedCrossRefGoogle Scholar
  2. 2.
    Ananta E, Knorr D (2009) Comparison of inactivation pathways of thermal or high pressure inactivated Lactobacillus rhamnosus ATCC 53103 by flow cytometry analysis. Food Microbiol 26:542–546PubMedCrossRefGoogle Scholar
  3. 3.
    Aydin S, Basaran AA, Basaran N (2005) The effects of thyme volatiles on the induction of DNA damage by the heterocyclic amine IQ and mitomycin C. Mutat Res 581:43–53PubMedCrossRefGoogle Scholar
  4. 4.
    Aydin S, Seker E (2005) Effect of an aqueous distillate of Origanum onites L. on isolated rat fundus, duodenum and ileum: evidence for the role of oxygenated monoterpenes. Pharmazie 60:147–150PubMedGoogle Scholar
  5. 5.
    Baehni PC, Takeuchi Y (2003) Anti-plaque agents in the prevention of biofilm-associated oral diseases. Oral Dis 9:23–29PubMedCrossRefGoogle Scholar
  6. 6.
    Baffone W, Sorgente G, Campana R, Patrone V, Sisti D, Falcioni T (2011) Comparative effect of chlorhexidine and some mouthrinses on bacterial biofilm formation on titanium surface. Curr Microbiol 62:445–451PubMedCrossRefGoogle Scholar
  7. 7.
    Barbesti S, Citterio S, Labra M, Baroni MD, Neri MG, Sgorbati S (2000) Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria. Cytometry 40:214–218PubMedCrossRefGoogle Scholar
  8. 8.
    Baser KH (2008) Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 14:3106–3119PubMedCrossRefGoogle Scholar
  9. 9.
    Ben Arfa A, Combes S, Preziosi-Belloy L, Gontard N, Chalier P (2006) Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol 43:149–154PubMedCrossRefGoogle Scholar
  10. 10.
    Botelho MA, Martins JG, Ruela RS, Rachid I, Santos JA, Soares JB, França MC, Montenegro D, Ruela WS, Barros LP, Queiroz DB, Araujo RS, Sampio FC (2009) Protective effect of locally applied carvacrol gel on ligature-induced periodontitis in rats: a tapping mode AFM study. Phytother Res 23:1439–1448PubMedCrossRefGoogle Scholar
  11. 11.
    Botelho MA, Nogueira NAP, Bastos GM, Fonseca SGC, Lemos TLG, Matos FJA, Montenegro D, Heukelbach J, Rao VS, Brito GAC (2007) Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz J Med Biol Res 40:349–356PubMedCrossRefGoogle Scholar
  12. 12.
    Bouhdid S, Abrini J, Zhiri A, Espuny MJ, Manresa A (2009) Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil. J Appl Microbiol 106:1558–1568PubMedCrossRefGoogle Scholar
  13. 13.
    Carlén A, Rüdiger SG, Loggner I, Olsson J (2003) Bacteria-binding plasma proteins in pellicles formed on hydroxyapatite in vitro and on teeth in vivo. Oral Microbiol Immunol 18:203–207PubMedCrossRefGoogle Scholar
  14. 14.
    Coracą-Hubér DC, Fille M, Hausdorfer J, Pfaller K, Nogler M (2012) Evaluation of MBEC™-HTP biofilm model for studies of implant associated infections. J Orthop Res 30:1176–1180PubMedCrossRefGoogle Scholar
  15. 15.
    Cronan CA, Potempa J, Travis J, Mayo JA (2006) Inhibition of Porphyromonas gingivalis proteinases (gingipains) by CHX: synergistic effect of Zn(II). Oral Microbiol Immunol 21:212–217PubMedCrossRefGoogle Scholar
  16. 16.
    Daferera DJ, Ziogas BN, Polissiou MC (2003) The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium spp. and Clavibacter michiganensis subs. michiganensis. Crop Prot 22:39–44CrossRefGoogle Scholar
  17. 17.
    Dalleau S, Cateau E, Bergès T, Berjeaud JM, Imbert C (2008) In vitro activity of terpenes against Candida biofilms. Int J Antimicrob Agents 31:572–576PubMedCrossRefGoogle Scholar
  18. 18.
    Diaper JP, Edwards C (1994) Survival of Staphylococcus aureus in lakewater monitored by flow cytometry. Microbiology 140(Pt 1):35–42PubMedCrossRefGoogle Scholar
  19. 19.
    Drake DR, Paul J, Keller JC (1999) Primary bacterial colonization of implant surfaces. Int J Oral Maxillofac Implants 14:226–232PubMedGoogle Scholar
  20. 20.
    Elter C, Heuer W, Demling A, Hannig M, Heidenblut T, Bach FW, Stiesch-Scholz M (2008) Supra- and subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants 23:327–334PubMedGoogle Scholar
  21. 21.
    Esposito M, Grusovin MG, Coulthard P, Worthington HV (2006) Interventions for replacing missing teeth: treatment of perimplantitis. Cochrane Database Syst Rev 3, CD004970. doi: 10.1002/14651858 PubMedGoogle Scholar
  22. 22.
    Furst MM, Salvi GE, Lang NP, Persson GR (2007) Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Impl Res 18:501–508CrossRefGoogle Scholar
  23. 23.
    Gill AO, Holley RA (2006) Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oils aromatics. Int J Food Microbiol 108:1–9PubMedCrossRefGoogle Scholar
  24. 24.
    Grosgogeat B, Reclaru L, Lissac M, Dalard F (1999) Measurement and evaluation of galvanic corrosion between titanium/Ti6A14V implants and dental alloys by electrochemical techniques and auger spectrometry. Biomaterials 20:933–941PubMedCrossRefGoogle Scholar
  25. 25.
    Guggenheim B, Meier A (2011) In vitro effect of chlorhexidine mouth rinses on polyspecies biofilms. Schweiz Monatsschr Zahnmed 121:432–441PubMedGoogle Scholar
  26. 26.
    Hanning C, Hanning M (2009) The oral cavity—a key system to understand substratum-dependent bioadhesion on solid surface in man. Clin Oral Invest 13:123–139CrossRefGoogle Scholar
  27. 27.
    Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LGM, Von Wright A (1998) Characterization of the action of selected essential oil components on gram-negative bacteria. J Agric Food Chem 46:3590–3595CrossRefGoogle Scholar
  28. 28.
    Iannitelli A, Grande R, Di Stefano A, Di Giulio M, Sozio P, Bessa LJ, Laserra S, Paolini C, Protasi F, Cellini L (2011) Potential antibacterial activity of Carvacrol-loaded poly(dl-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int J Mol Sci 12:5039–5051PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Jeon JG, Rosalen PL, Falsetta ML, Koo H (2011) Natural products in caries research: current (limited) knowledge, challenges and future perspective. Caries Res 45:243–263PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Knowles JR, Roller S, Murray DB, Naidu AS (2005) Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica Serovar typhimurium. Appl Environ Microbiol 71:797–803PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kotsovilis S, Karoussis IK, Trianti M, Fourmousis I (2008) Therapy of peri-implantitis: a systematic review. J Clin Periodontol 35:621–629PubMedCrossRefGoogle Scholar
  32. 32.
    Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462PubMedCrossRefGoogle Scholar
  33. 33.
    Lindhe J, Meyle J (2008) Peri-implant diseases: consensus report of the sixth European workshop on periodontology. J Clin Periodontol 35:282–28PubMedCrossRefGoogle Scholar
  34. 34.
    Maxwell J, Greenberg M, Stawski B, Broderick K Breath freshening and oral cleansing product using Carvacrol. United States Patent 20040253278. Available from: Accessed November 10, 2008
  35. 35.
    Modesto A, Drake RD (2006) Multiple exposures to Chlorhexidine and Xylitol: adhesion and biofilm formation by Streptococcus mutans. Curr Microbiol 52:418–423PubMedCrossRefGoogle Scholar
  36. 36.
    National Committee for Clinical Laboratory Standards (NCCLS) (2001) Performance standards for antimicrobial susceptibility testing. Eleventh information supplement, NCCLS, Wayne, PA, M100–S11, vol 21, n.1Google Scholar
  37. 37.
    Noiri Y, Okami Y, Narimatsu M, Takahashi Y, Kawahara T, Ebisu S (2003) Effects of chlorhexidine, minocycline, and metronidazole on Porphyromonas gingivalis strain 381 in biofilms. J Periodontol 74:1647–1651PubMedCrossRefGoogle Scholar
  38. 38.
    Nostro A, Marino A, Blanco AR, Cellini L, Di Giulio M, Pizzimenti F, Sudano Roccaro A, Bisignano G (2009) In vitro activity of Carvacrol against staphylococcal preformed biofilm by liquid and vapour contact. J Med Microbiol 58:791–797PubMedCrossRefGoogle Scholar
  39. 39.
    Nostro A, Papalia T (2012) Antimicrobial activity of Carvacrol: current progress and future perspectives. Recent Pat Antiinfect Drug Discov 7:28–35PubMedCrossRefGoogle Scholar
  40. 40.
    Ntruoka VI, Slot DE, Louropoulou A, Van der Weijden F (2011) The effect of chemotherapeutic agents on contaminated titanium surfaces: a systematic review. Clin Oral Impl Res 22:681–690CrossRefGoogle Scholar
  41. 41.
    Palombo EA (2011) Traditional medicinal plant extracts and natural products with activity against oral bacteria: potential application in the prevention and treatment of oral diseases. Evidence-Based Complement Altern Med 2011:1–15CrossRefGoogle Scholar
  42. 42.
    Pérez-Conesa D, Cao J, Chen L, Mclandsborough L, Weiss J (2011) Inactivation of Listeria monocytogenes and Escherichia coli O157:H7 biofilms by micelle-encapsulated eugenol and carvacrol. J Food Prot 74:55–62PubMedCrossRefGoogle Scholar
  43. 43.
    Petit JM, Denis-Gay M, Ratinaud MH (1993) Assessment of fluorochromes for cellular structure and function studies by flow cytometry. Biol Cell 78:1–13PubMedCrossRefGoogle Scholar
  44. 44.
    Pianetti A, Battistelli M, Barbieri F, Bruscolini F, Falcieri E, Manti A, Sabatini L, Citterio B (2012) Changes in adhesion ability of Aeromonas hydrophila during long exposure to salt stress conditions. J Appl Microbiol 113:974–982PubMedCrossRefGoogle Scholar
  45. 45.
    Quhayoun JP (2003) Penetrating the plaque biofilm: impact of essential oil mouth-wash. J Clin Periodontol 30:10–12CrossRefGoogle Scholar
  46. 46.
    Rasooli I, Shayegh S, Astasneh SDA (2009) The effect of Mentha spicata and Eucalyptus camaldulensis essential oils on dental biofilm. Int J Dent Hyg 7:196–203PubMedCrossRefGoogle Scholar
  47. 47.
    Rasooli I, Shayegh S, Taghizadeh M, Astasneh SDA (2008) Phytotherapeutic prevention of dental biofilm formation. Phytother Res 22:1162–1167PubMedCrossRefGoogle Scholar
  48. 48.
    Reese S, Guggenheim B (2007) A novel TEM contrasting technique for extracellular polysaccharides in in vitro biofilms. Microsc Res Technol 70:816–822CrossRefGoogle Scholar
  49. 49.
    Schmidlin PR, Müller P, Attin T, Wieland M, Hofer D, Guggenheim B (2013) Polyspecies biofilm formation on implant surfaces with different surface characteristics. J Appl Oral Sci 21:48–55PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Sennhenn-Kirchner S, Wolff N, Klaue S, Mergeryan H, Borg-von Zepelin M (2009) Decontamination efficacy of antiseptic agents on in vivo grown biofilms on rough titanium surfaces. Quintessence Int 40:e80–e88PubMedGoogle Scholar
  51. 51.
    Shahab A, Haghighati F, Baeeri M, Jamalifar M, Abdollahi M (2011) A clinical, microbiological and immunological comparison between subgingival irrigation with Dentol™ and chlorhexidine in advanced periodontitis. Arch Med Sci 7:154–160PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Shapiro S, Guggenheim B (1995) The action of thymol on oral bacteria. Oral Microbiol Immunol 10:241–246PubMedCrossRefGoogle Scholar
  53. 53.
    Sharopov FS, Kukaniev MA, Setzer WN (2011) Composition of the essential oil of Origanum tyttanthum from Tajikistan. Nat Prod Commun 6:1719–1722PubMedGoogle Scholar
  54. 54.
    Shen Y, Stojicic S, Haapasalo M (2011) Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod 37:657–661PubMedCrossRefGoogle Scholar
  55. 55.
    Singh A, Daing A, Dixit J (2013) The effect of herbal, essential oil and chlorhexidine mouthrinse on de novo plaque formation. Int J Dent Hyg 11:48–52PubMedCrossRefGoogle Scholar
  56. 56.
    Socransky SS (2000) Haffajee AD (2002) Dental biofilms: difficult therapeutic targets. Periodontol 28:12–55CrossRefGoogle Scholar
  57. 57.
    Takarada K, Kimizuka R, Takahashi N, Honma K, Okuda K, Kato T (2004) A comparison of the antibacterial efficacies of essential oils against oral pathogens. Oral Microbiol Immunol 19:61–64PubMedCrossRefGoogle Scholar
  58. 58.
    Turina AV, Nolan MV, Zygadlo JA, Perillo MA (2006) Natural terpenes: self-assembly and membrane partitioning. Biophys Chem 122:101–113PubMedCrossRefGoogle Scholar
  59. 59.
    Ultee A, Bennink MHJ, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68:1561–1568PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Ultee A, Kets EPW, Smid J (1999) Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 65:4606–4610PubMedPubMedCentralGoogle Scholar
  61. 61.
    Ultee A, Smid EJ (2001) Influence of carvacrol on growth and toxin production by Bacillus cereus. Int J Food Microbiol 64:373–378PubMedCrossRefGoogle Scholar
  62. 62.
    Uyanoglu M, Canbek M, Aral E, Husnu Can Baser K (2008) Effects of carvacrol upon the liver of rats undergoing partial hepatectomy. Phytomedicine 15:226–229PubMedCrossRefGoogle Scholar
  63. 63.
    Van Leeuwen MPC, Slot DE, Van der Weijden GA (2011) Essential oils compared to chlorhexidine with respect to plaque and parameters of gingival inflammation: a systematic review. J Periodontol 82:174–194PubMedCrossRefGoogle Scholar
  64. 64.
    Van Strydonck DA, Slot DE, Van der Velden U, Van der Weijden F (2012) Effect of a chlorhexidine mouthrinse on plaque, gingival inflammation and staining in gingivitis patients: a systematic review. J Clin Periodontol 39(11):1042–1055PubMedCrossRefGoogle Scholar
  65. 65.
    Wilson M (1996) Susceptibility of oral bacteria biofilms to antimicrobial agents. J Med Microbiol 44:79–87PubMedCrossRefGoogle Scholar
  66. 66.
    Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C (2000) Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res 79:21–27PubMedCrossRefGoogle Scholar
  67. 67.
    Xu J, Zhou F, Ji BP, Pei RS, Xu N (2008) The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol 47:174–179PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eleonora Ciandrini
    • 1
  • Raffaella Campana
    • 2
  • Sara Federici
    • 2
  • Anita Manti
    • 1
  • Michela Battistelli
    • 1
  • Elisabetta Falcieri
    • 1
  • Stefano Papa
    • 2
  • Wally Baffone
    • 2
    Email author
  1. 1.Department of Earth, Life and Environmental SciencesUniversity of Urbino “Carlo Bo”UrbinoItaly
  2. 2.Department of Biomolecular Science, Division of Toxicology, Hygienic and Environmental SciencesUniversity of UrbinoUrbinoItaly

Personalised recommendations