Clinical Oral Investigations

, Volume 18, Issue 8, pp 1949–1961 | Cite as

Cortical activation resulting from the stimulation of periodontal mechanoreceptors measured by functional magnetic resonance imaging (fMRI)

  • P. Habre-HallageEmail author
  • L. Dricot
  • L. Hermoye
  • H. Reychler
  • D. van Steenberghe
  • R. Jacobs
  • C. B. Grandin
Original Article



To describe the normal cortical projections of periodontal mechanoreceptors.

Material and methods

A device using von Frey filaments delivered 1-Hz punctate tactile stimuli to the teeth during fMRI. In a block design paradigm, tooth (T) 11 and T13 were stimulated in ten volunteers and T21 and T23 in ten other subjects. Random-effect group analyses were performed for each tooth, and differences between teeth were examined using ANOVA.


The parietal operculum (S2) was activated bilaterally for all teeth; the postcentral gyrus (S1) was activated bilaterally for T21 and T23 and contralaterally for T11 and T13. In the second-level analysis including the four teeth, we found five clusters: bilateral S1 and S2, and left inferior frontal gyrus, with no difference between teeth in somatosensory areas. However, the ANOVA performed on the S1 clusters found separately in each tooth showed that S1 activation was more contralateral for the canines.


One-hertz mechanical stimulation activates periodontal mechanoreceptors and elicits bilateral cortical activity in S1 and S2, with a double representation in S2, namely in OP1 and OP4.

Clinical relevance

The cortical somatotopy of periodontal mechanoreceptors is poorly described. These findings may serve as normal reference to further explore the cortical plasticity induced by periodontal or neurological diseases.


fMRI Somatosensory cortex Trigeminal Dental Periodontal mechanoreceptor 


Conflict of interest

The authors declare that they have no conflict of interests. No external funding, apart from the support of the authors’ institution, was available for this study.


  1. 1.
    Trulsson M, Gunne HS (1998) Food-holding and -biting behavior in human subjects lacking periodontal receptors. J Dent Res 77:574–582PubMedCrossRefGoogle Scholar
  2. 2.
    Trulsson M, Johansson RS (2002) Orofacial mechanoreceptors in humans: encoding characteristics and responses during natural orofacial behaviors. Behav Brain Res 135:27–33PubMedCrossRefGoogle Scholar
  3. 3.
    Trulsson M, Johansson RS, Olsson KA (1992) Directional sensitivity of human periodontal mechanoreceptive afferents to forces applied to the teeth. J Physiol 447:373–389PubMedPubMedCentralGoogle Scholar
  4. 4.
    Trulsson M, Johansson RS (1994) Encoding of amplitude and rate of forces applied to the teeth by human periodontal mechanoreceptive afferents. J Neurophysiol 72:1734–1744PubMedGoogle Scholar
  5. 5.
    Trulsson M, Johansson RS (1996) Encoding of tooth loads by human periodontal afferents and their role in jaw motor control. Prog Neurobiol 49:267–284PubMedCrossRefGoogle Scholar
  6. 6.
    Ettlin DA, Zhang H, Lutz K, Jarmann T, Meier D, Gallo LM, Jancke L, Palla S (2004) Cortical activation resulting from painless vibrotactile dental stimulation measured by functional magnetic resonance imaging (FMRI). J Dent Res 83:757–761PubMedCrossRefGoogle Scholar
  7. 7.
    Miyamoto JJ, Honda M, Saito DN, Okada T, Ono T, Ohyama K, Sadato N (2006) The representation of the human oral area in the somatosensory cortex: a functional MRI study. Cereb Cortex 16:669–675PubMedCrossRefGoogle Scholar
  8. 8.
    Trulsson M, Francis ST, Bowtell R, McGlone F (2010) Brain activations in response to vibrotactile tooth stimulation: a psychophysical and FMRI study. J Neurophysiol 104:2257–2265PubMedCrossRefGoogle Scholar
  9. 9.
    Penfield W (1950) The cerebral cortex of man: a clinical study of localization of function. Macmillan, New YorkGoogle Scholar
  10. 10.
    Van Loven K, Jacobs R, Van Hees J, Van Huffel S, van Steenberghe D (2001) Trigeminal somatosensory evoked potentials in humans. Electromyogr Clin Neurophysiol 41:357–375PubMedGoogle Scholar
  11. 11.
    Nakahara H, Nakasato N, Kanno A, Murayama S, Hatanaka K, Itoh H, Yoshimoto T (2004) Somatosensory-evoked fields for gingiva, lip, and tongue. J Dent Res 83:307–311Google Scholar
  12. 12.
    Trulsson M (2006) Sensory-motor function of human periodontal mechanoreceptors. J Oral Rehabil 33:262–273PubMedCrossRefGoogle Scholar
  13. 13.
    Jantsch HH, Kemppainen P, Ringler R, Handwerker HO, Forster C (2005) Cortical representation of experimental tooth pain in humans. Pain 118:390–399PubMedCrossRefGoogle Scholar
  14. 14.
    Habre-Hallage P, Hermoye L, Gradkowski W, Jacobs R, Reychler H, Grandin CB (2010) A manually controlled new device for punctuate mechanical stimulation of teeth during functional magnetic resonance imaging studies. J Clin Periodontol 37:863–872PubMedCrossRefGoogle Scholar
  15. 15.
    Habre-Hallage P, Dricot L, Jacobs R, van Steenberghe D, Reychler H, Grandin CB (2012) Brain plasticity and cortical correlates of osseoperception revealed by punctate mechanical stimulation of osseointegrated oral implants during fMRI. Eur J Oral Implantol 5: 175–190Google Scholar
  16. 16.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  17. 17.
    Talairach G, Tournoux P (eds) (1988) Co-planar stereotaxic atlas of the human brain. Thieme Verlag, New YorkGoogle Scholar
  18. 18.
    Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221PubMedGoogle Scholar
  19. 19.
    Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16:268–279PubMedCrossRefGoogle Scholar
  20. 20.
    Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16:254–267.Google Scholar
  21. 21.
    Hari R, Kaukoranta E (1985) Neuromagnetic studies of somatosensory system: principles and examples. Prog Neurobiol 24:233–256PubMedCrossRefGoogle Scholar
  22. 22.
    Davis KD, Kwan CL, Crawley AP, Mikulis DJ (1998) Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J Neurophysiol 80:1533–1546PubMedGoogle Scholar
  23. 23.
    Hagen MC, Pardo JV (2002) PET studies of somatosensory processing of light touch. Behav Brain Res 135:133–140PubMedCrossRefGoogle Scholar
  24. 24.
    Iannetti GD, Porro CA, Pantano P, Romanelli PL, Galeotti F, Cruccu G (2003) Representation of different trigeminal divisions within the primary and secondary human somatosensory cortex. Neuroimage 19:906–912PubMedCrossRefGoogle Scholar
  25. 25.
    Fox PT, Burton H, Raichle ME (1987) Mapping human somatosensory cortex with positron emission tomography. J Neurosurg 67:34–43PubMedCrossRefGoogle Scholar
  26. 26.
    Huang RS, Sereno MI (2007) Dodecapus: an MR-compatible system for somatosensory stimulation. Neuroimage 34:1060–1073PubMedCrossRefGoogle Scholar
  27. 27.
    Dresel C, Parzinger A, Rimpau C, Zimmer C, Ceballos-Baumann AO, Haslinger B (2008) A new device for tactile stimulation during fMRI. Neuroimage 39:1094–1103PubMedCrossRefGoogle Scholar
  28. 28.
    Kopietz R, Sakar V, Albrecht J, Kleemann AM, Schopf V, Yousry I, Linn J, Fesl G, Wiesmann M (2009) Activation of primary and secondary somatosensory regions following tactile stimulation of the face. Klin Neuroradiol 19:135–144PubMedCrossRefGoogle Scholar
  29. 29.
    Jousmaki V, Nishitani N, Hari R (2007) A brush stimulator for functional brain imaging. Clin Neurophysiol 118:2620–2624PubMedCrossRefGoogle Scholar
  30. 30.
    Disbrow EA, Hinkley LB, Roberts TP (2003) Ipsilateral representation of oral structures in human anterior parietal somatosensory cortex and integration of inputs across the midline. J Comp Neurol 467:487–495PubMedCrossRefGoogle Scholar
  31. 31.
    Robertson EM, Pascual-Leone A (2003) Prefrontal cortex: procedural sequence learning and awareness. Curr Biol 13:R65–R67PubMedCrossRefGoogle Scholar
  32. 32.
    Rausell E, Jones EG (1991) Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map. J Neurosci 11:210–225PubMedGoogle Scholar
  33. 33.
    Rausell E, Jones EG (1991) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci 11:226–237PubMedGoogle Scholar
  34. 34.
    Weigelt A, Terekhin P, Kemppainen P, Dorfler A, Forster C (2010) The representation of experimental tooth pain from upper and lower jaws in the human trigeminal pathway. Pain 149:529–538PubMedCrossRefGoogle Scholar
  35. 35.
    Manger PR, Woods TM, Jones EG (1996) Representation of face and intra-oral structures in area 3b of macaque monkey somatosensory cortex. J Comp Neurol 371:513–521PubMedCrossRefGoogle Scholar
  36. 36.
    Merzenich MM, Kaas JH, Sur M, Lin CS (1978) Double representation of the body surface within cytoarchitectonic areas 3b and 1 in “SI” in the owl monkey (Aotus trivirgatus). J Comp Neurol 181:41–73PubMedCrossRefGoogle Scholar
  37. 37.
    Jain N, Qi HX, Catania KC, Kaas JH (2001) Anatomic correlates of the face and oral cavity representations in the somatosensory cortical area 3b of monkeys. J Comp Neurol 429:455–468PubMedCrossRefGoogle Scholar
  38. 38.
    Iyengar S, Qi HX, Jain N, Kaas JH (2007) Cortical and thalamic connections of the representations of the teeth and tongue in somatosensory cortex of new world monkeys. J Comp Neurol 501:95–120PubMedCrossRefGoogle Scholar
  39. 39.
    Henry EC, Marasco PD, Catania KC (2005) Plasticity of the cortical dentition representation after tooth extraction in naked mole-rats. J Comp Neurol 485:64–74PubMedCrossRefGoogle Scholar
  40. 40.
    Trulsson M (1993) Multiple-tooth receptive fields of single human periodontal mechanoreceptive afferents. J Neurophysiol 69:474–481PubMedGoogle Scholar
  41. 41.
    Johnsen SE, Trulsson M (2003) Receptive field properties of human periodontal afferents responding to loading of premolar and molar teeth. J Neurophysiol 89:1478–1487PubMedCrossRefGoogle Scholar
  42. 42.
    Ehrsson HH, Geyer S, Naito E (2003) Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol 90:3304–3316PubMedCrossRefGoogle Scholar
  43. 43.
    Toda T, Taoka M (2001) The complexity of receptive fields of periodontal mechanoreceptive neurons in the postcentral area 2 of conscious macaque monkey brains. Arch Oral Biol 46:1079–1084PubMedCrossRefGoogle Scholar
  44. 44.
    Manzoni T, Conti F, Fabri M (1986) Callosal projections from area SII to SI in monkeys: anatomical organization and comparison with association projections. J Comp Neurol 252:245–263PubMedCrossRefGoogle Scholar
  45. 45.
    Fabri M, Polonara G, Del Pesce M, Quattrini A, Salvolini U, Manzoni T (2001) Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient. J Cogn Neurosci 13:1071–1079PubMedCrossRefGoogle Scholar
  46. 46.
    Karhu J, Tesche CD (1999) Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J Neurophysiol 81:2017–2025PubMedGoogle Scholar
  47. 47.
    Eickhoff SB, Grefkes C, Zilles K, Fink GR (2007) The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. Cereb Cortex 17:1800–1811PubMedCrossRefGoogle Scholar
  48. 48.
    Macaluso E, Driver J (2005) Multisensory spatial interactions: a window onto functional integration in the human brain. Trends Neurosci 28:264–271PubMedCrossRefGoogle Scholar
  49. 49.
    Trulsson M, Johansson RS (1996) Forces applied by the incisors and roles of periodontal afferents during food-holding and -biting tasks. Exp Brain Res 107:486–496PubMedCrossRefGoogle Scholar
  50. 50.
    Picton DC (1989) The periodontal enigma: eruption versus tooth support. Eur J Orthod 11:430–439PubMedGoogle Scholar
  51. 51.
    Dong WK, Shiwaku T, Kawakami Y, Chudler EH (1993) Static and dynamic responses of periodontal ligament mechanoreceptors and intradental mechanoreceptors. J Neurophysiol 69:1567–1582Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Habre-Hallage
    • 1
    • 2
    Email author
  • L. Dricot
    • 3
  • L. Hermoye
    • 4
  • H. Reychler
    • 5
  • D. van Steenberghe
    • 6
  • R. Jacobs
    • 2
  • C. B. Grandin
    • 3
    • 7
  1. 1.Department of Prosthodontics, Faculty of DentistrySaint Joseph UniversityBeirutLebanon
  2. 2.Oral Imaging Center, Faculty of MedicineCatholic University of LeuvenLeuvenBelgium
  3. 3.Institute of NeurosciencesUniversité Catholique de LouvainBrusselsBelgium
  4. 4.Imagilys SPRLBrusselsBelgium
  5. 5.Department of Oral and Maxillofacial SurgerySt Luc University Hospital, Université Catholique de LouvainBrusselsBelgium
  6. 6.Faculty of MedicineCatholic University of LeuvenLeuvenBelgium
  7. 7.Medical Imaging DepartmentSt Luc University HospitalBrusselsBelgium

Personalised recommendations