Skip to main content

Advertisement

Log in

Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to demonstrate that the periodontal pathogen Aggregatibacter actinomycetemcomitans (AA) can be killed by irradiation with blue light derived from a LED light-curing unit due to its endogenous photosensitizers.

Materials and methods

Planktonic cultures of AA and Escherichia coli were irradiated with blue light from a bluephase® C8 light-curing unit with an emission peak at 460 nm, which is usually applied for polymerization of dental resins. A CFU-assay was performed for the analysis of viable bacteria after treatment. Moreover, bacterial cells were lysed and the lysed AA and E. coli were investigated for generation of singlet oxygen. Spectroscopic measurements of lysed AA and E. coli were performed and analyzed for characteristic absorption and emission peaks.

Results

A light dose of 150 J/cm2 induced a reduction of ≥5 log10 steps of viable AA, whereas no effect of blue light was found against E. coli. Spectrally resolved measurements of singlet oxygen luminescence showed clearly that a singlet oxygen signal is generated from lysed AA upon excitation at 460 nm. Spectroscopic measurements of lysed AA exhibited characteristic absorption and emission peaks similar to those of known porphyrins and flavins.

Conclusions

AA can be inactivated by irradiation with blue light only, without application of an exogenous photosensitizer.

Clinical relevance

These results encourage further studies on the potential use of these blue light-mediated auto-photosensitization processes in the treatment of periodontitis for the successful inactivation of Aggregatibacter actinomycetemcomitans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rossolini GM, Mantengoli E (2008) Antimicrobial resistance in Europe and its potential impact on empirical therapy. Clin Microbiol Infect 14(Suppl 6):2–8

    Article  PubMed  Google Scholar 

  2. Yazdankhah SP, Scheie AA, Høiby EA et al (2006) Triclosan and antimicrobial resistance in bacteria: an overview. Microb Drug Resist 12:83–90

    Article  PubMed  Google Scholar 

  3. Yamamoto T, Tamura Y, Yokota T (1988) Antiseptic and antibiotic resistance plasmid in Staphylococcus aureus that possesses ability to confer chlorhexidine and acrinol resistance. Antimicrob Agents Chemother 32:932–935

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dai T, Huang Y-Y, Hamblin MR (2009) Photodynamic therapy for localized infections—state of the art. Photodiagnosis Photodyn Ther 6:170–188

    Article  PubMed Central  PubMed  Google Scholar 

  5. St Denis TG, Dai T, Izikson L et al (2011) All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence 2:509–520

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13–28

    Article  PubMed  Google Scholar 

  7. Maisch T, Wagner J, Papastamou V et al (2009) Combination of 10 % EDTA, photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro. J Appl Microbiol 107:1569–1578

    Article  PubMed  Google Scholar 

  8. Papastamou V, Nietzsch T, Staudte H et al (2011) Photoinactivation of F. nucleatum and P. gingivalis using the ruthenium-based RD3 sensitizer and a conventional halogen lamp. Arch Oral Biol 56:264–268

    Article  PubMed  Google Scholar 

  9. Al-Ahmad A, Tennert C, Karygianni L et al (2013) Antimicrobial photodynamic therapy using visible light plus water-filtered infrared-A (wIRA). J Med Microbiol 62:467–473

    Article  PubMed  Google Scholar 

  10. Ashkenazi H, Malik Z, Harth Y, Nitzan Y (2003) Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunol Med Microbiol 35:17–24

    Article  PubMed  Google Scholar 

  11. Lipovsky A, Nitzan Y, Friedmann H, Lubart R (2009) Sensitivity of Staphylococcus aureus strains to broadband visible light. Photochem Photobiol 85:255–260

    Article  PubMed  Google Scholar 

  12. Hamblin MR, Viveiros J, Yang C et al (2005) Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrob Agents Chemother 49:2822–2827

    Article  PubMed Central  PubMed  Google Scholar 

  13. Soukos NS, Som S, Abernethy AD et al (2005) Phototargeting oral black-pigmented bacteria. Antimicrob Agents Chemother 49:1391–1396

    Article  PubMed Central  PubMed  Google Scholar 

  14. Dai T, Gupta A, Murray CK et al (2012) Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat 15:223–236

    Article  PubMed Central  PubMed  Google Scholar 

  15. Klinger R (1912) Untersuchungen über menschliche Aktinomykose. Zentralbl Bakteriol 62:191–200

    Google Scholar 

  16. Pulverer G, Schütt-Gerowitt H (1998) Actinobacillus actinomycetemcomitans in the human oral microflora. Zentralbl Bakteriol 288:87–92

    Article  PubMed  Google Scholar 

  17. Fine DH, Kaplan JB, Kachlany SC (2000) Schreiner HC (2006) How we got attached to Actinobacillus actinomycetemcomitans: a model for infectious diseases. Periodontol 42:114–157

    Article  Google Scholar 

  18. Das M, Badley AD, Cockerill FR et al (1997) Infective endocarditis caused by HACEK microorganisms. Annu Rev Med 48:25–33

    Article  PubMed  Google Scholar 

  19. Henderson B, Nair SP, Ward JM, Wilson M (2003) Molecular pathogenicity of the oral opportunistic pathogen Actinobacillus actinomycetemcomitans. Annu Rev Microbiol 57:29–55

    Article  PubMed  Google Scholar 

  20. Kachlany SC (2010) Aggregatibacter actinomycetemcomitans leukotoxin: from threat to therapy. J Dent Res 89:561–570

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bjurshammar N, Johannsen A, Buhlin K et al (2012) On the red fluorescence emission of Aggregatibacter actinomycetemcomitans. OJST 2:299–306

    Article  Google Scholar 

  22. Song H-H, Lee J-K, Um H-S et al (2013) Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens. J Periodontal Implant Sci 43:72–78

    Article  PubMed Central  PubMed  Google Scholar 

  23. Miles AA, Misra SS, Irwin JO (1938) The estimation of the bactericidal power of the blood. J Hyg (Lond) 38:732–749

    Article  Google Scholar 

  24. Baier J, Maisch T, Maier M et al (2006) Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys J 91:1452–1459

    Article  PubMed Central  PubMed  Google Scholar 

  25. Baier J, Fuss T, Pöllmann C et al (2007) Theoretical and experimental analysis of the luminescence signal of singlet oxygen for different photosensitizers. J Photochem Photobiol B Biol 87:163–173

    Article  Google Scholar 

  26. Boyce JM, Pittet D (2002) Guideline for hand hygiene in health-care settings: recommendations of the healthcare infection control practices advisory committee and the HICPAC/SHEA/APIC/IDSA hand hygiene task force. Infect Control Hosp Epidemiol 23:3–40

    Article  Google Scholar 

  27. Regensburger J, Maisch T, Felgenträger A et al (2010) A helpful technology—the luminescence detection of singlet oxygen to investigate photodynamic inactivation of bacteria (PDIB). J Biophotonics 3:319–327

    Article  PubMed  Google Scholar 

  28. Eley M, Lee J, Lhoste JM et al (1970) Bacterial bioluminescence. Comparisons of bioluminescence emission spectra, the fluorescence of luciferase reaction mixtures, and the fluorescence of flavin cations. Biochemistry 9:2902–2908

    Article  PubMed  Google Scholar 

  29. Kotaki A, Yagi K (1970) Fluorescence properties of flavins in various solvents. J Biochem 68:509–516

    PubMed  Google Scholar 

  30. Rimington C (1960) Spectral-absorption coefficients of some porphyrins in the Soret-band region. Biochem J 75:620–623

    PubMed Central  PubMed  Google Scholar 

  31. Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163

    Article  Google Scholar 

  32. Maisch T, Baier J, Franz B et al (2007) The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc Natl Acad Sci U S A 104:7223–7228

    Article  PubMed Central  PubMed  Google Scholar 

  33. Liebmann J, Born M, Kolb-Bachofen V (2010) Blue-light irradiation regulates proliferation and differentiation in human skin cells. J Invest Dermatol 130:259–269

    Article  PubMed  Google Scholar 

  34. Spranley TJ, Winkler M, Dagate J et al (2012) Curing light burns. Gen Dent 60:e210–e214

    PubMed  Google Scholar 

  35. Feuerstein O, Persman N, Weiss EI (2004) Phototoxic effect of visible light on Porphyromonas gingivalis and Fusobacterium nucleatum: an in vitro study. Photochem Photobiol 80:412–415

    Article  PubMed  Google Scholar 

  36. Feuerstein O, Ginsburg I, Dayan E et al (2005) Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum. Photochem Photobiol 81:1186–1189

    Article  PubMed  Google Scholar 

  37. Kawada A, Aragane Y, Kameyama H et al (2002) Acne phototherapy with a high-intensity, enhanced, narrow-band, blue light source: an open study and in vitro investigation. J Dermatol Sci 30:129–135

    Article  PubMed  Google Scholar 

  38. Ganz RA, Viveiros J, Ahmad A et al (2005) Helicobacter pylori in patients can be killed by visible light. Lasers Surg Med 36:260–265

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Judith Heider is gratefully acknowledged for her help with modifying the Laemmli buffer for bacterial cell lysis. Johannes Regensburger and Anita Gollmer are funded by grants of the German Research Foundation (DFG-RE-3323/2-1 and DFG-GO-2340/1-1, respectively).

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Maisch.

Additional information

Tim Maisch and Gottfried Schmalz share senior authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cieplik, F., Späth, A., Leibl, C. et al. Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers. Clin Oral Invest 18, 1763–1769 (2014). https://doi.org/10.1007/s00784-013-1151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-1151-8

Keywords

Navigation