Skip to main content

Advertisement

Log in

Long-term performance of posterior InCeram Alumina crowns cemented with different luting agents: a prospective, randomized clinical split-mouth study over 5 years

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This prospective, randomized clinical split-mouth study investigated the 5-year performance of InCeram Alumina posterior crowns cemented with three different luting cements. 4-META- and MDP-based cements were used for adhesive luting. Glass ionomer cement served as control.

Materials and Methods

Sixty patients were treated with 149 (n = 62 Panavia F/MDP; n = 59 SuperBond-C&B/4-META; n = 28 Ketac Cem/glass ionomer) InCeram Alumina crowns on vital molars and premolars in a comparable position. Follow-up examinations were performed annually up to 5 years after crown placement using the modified United States Public Health Service (USPHS) criteria. Kaplan–Meier survival analysis comprised secondary caries, clinically unacceptable fractures, root canal treatment and debonding. Kaplan–Meier success rate included restorations with minimal crevices, tolerable color deviations (<1 Vitashade), and clinically acceptable fractures. Logistic regression models with a random intercept were fitted.

Results

The 5-year Kaplan–Meier survival probabilities were: SuperBond-C&B 88.7 %, Panavia F 82.8 %, Ketac Cem 80.1 % with no significant difference (p = .813). Endodontical treatment was carried out on 7.4 % of all abutment teeth, and 5.4 % revealed secondary caries. Unacceptable ceramic fractures were observed in 7.4 %. Debonding was a rare complication (1.3 %). The 5 year Kaplan–Meier success rate was 91.6 % for SuperBond-C&B-, 87.4 % for Ketac Cem- and 86.3 % for Panavia F-bonded restorations with no significant difference (p = .624). All cement types showed significant marginal deterioration over time (p < .0001).

Conclusions

Posterior InCeram Alumina crowns showed acceptable long-term survival and success rates independent of luting agent used. Ceramic fractures, endodontical treatments and secondary caries were the most frequent failures.

Clinical relevance

Glass-infiltrated Alumina crowns in combination with adhesive as well as conventional cementation can be considered as a reliable treatment option in posterior teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang X, Fan D, Swain MV, Zhao K (2012) A systematic review of all-ceramic crowns: clinical fracture rates in relation to restored tooth type. Int J Prosthodont 25:441–450

    PubMed  Google Scholar 

  2. Blatz MB (2002) Longterm clinical success of all-ceramic posterior restorations. Quintessence Int 33:415–426

    PubMed  Google Scholar 

  3. Scotti R, Catapano S, D'Elia A (1995) A clinical evaluation of In-Ceram crowns. Int J Prosthodont 8:320–323

    PubMed  Google Scholar 

  4. Proebster L (1996) Four year clinical study of glass-infiltrated, sintered alumina crowns. J Oral Rehabil 23:147–151

    Article  Google Scholar 

  5. Rinke S, Tsigaras A, Huels A, Roediger M (2011) An 18-year retrospective evaluation of glass-infiltrated alumina crowns. Quintessence Int 42:625–633

    PubMed  Google Scholar 

  6. Wassermann A, Kaiser M, Strub JR (2006) Clinical long-term results of VITA In-Ceram classic crowns and fixed partial dentures: a systematic literature review. Int J Prosthodont 19:355–363

    PubMed  Google Scholar 

  7. Blatz MB, Mante FK, Saleh N, Atlas AM, Mannan S, Ozer F (2013) Postoperative tooth sensitivity with a new self-adhesive resin cement—a randomized clinical trial. Clin Oral Invest 17:793–798

    Article  Google Scholar 

  8. Friederich R, Kern M (2002) Resin bond strength to densely sintered alumina ceramic. Int J Prosthodont 15:333–338

    PubMed  Google Scholar 

  9. Kern M, Thompson VP (1995) Bonding to glass infiltrated alumina ceramic: adhesive methods and their durability. J Prosthet Dent 73:240–249

    Article  PubMed  Google Scholar 

  10. Aoki K, Kitasako Y, Ichinose S, Burrow MF, Ariyoshi M, Nikaido T, Tagami J (2011) Ten-year observation of dentin bonding durability of 4-META/MMA-TBB resin cement—a SEM and TEM study. Dent Mater 30:438–447

    Article  Google Scholar 

  11. Denner N, Heydecke G, Gerds T, Strub JR (2007) Clinical comparison of postoperative sensitivity for an adhesive resin cement containing 4-META and a conventional glass-ionomer cement. Int J Prosthodont 20:73–78

    PubMed  Google Scholar 

  12. Nakabayashi N, Ashizawa M, Nakamura M (1992) Identification of a resin-dentin hybrid layer in vital human dentin created in vivo: durable bonding to vital dentin. Quintessence Int 23:135–141

    PubMed  Google Scholar 

  13. Nakabayashi N, Kojima K, Masuhara E (1982) Studies on dental self-curing resins. Adhesion to dentin by mechanical interlocking. J Jpn Dent Mater 1:74–77

    Google Scholar 

  14. Tanaka T, Nagata K, Takeyama M, Atsuta M, Nakabayashi N, Masuhara E (1981) 4-META opaque resin—a new resin strongly adhesive to nickel–chromium alloy. J Dent Res 60:1697–1706

    Article  PubMed  Google Scholar 

  15. Komine F, Tomic M, Gerds T, Strub JR (2004) Influence of different adhesive resin cements on the fracture strength of aluminum oxide ceramic posterior crowns. J Prosthet Dent 92:359–364

    Article  PubMed  Google Scholar 

  16. Knobloch LA, Kerby RE, Seghi R, Berlin JS, Lee JS (2000) Fracture toughness of resin-based luting cements. J Prosthet Dent 83:204–209

    Article  PubMed  Google Scholar 

  17. Christensen GJ (1994) Why is glass ionomer cement so popular? J Am Dent Assoc 125:1257–1258

    PubMed  Google Scholar 

  18. Wilson AD, Prosser HJ, Powis DM (1983) Mechanism of adhesion of polyelectrolyte cements to hydroxyapatite. J Dent Res 62:590–592

    Article  PubMed  Google Scholar 

  19. Cvar J, Ryge G (1971) Criteria for the clinical evaluation of dental restorative materials and techniques. US Public Health Service Publication No.790. US Government Printing Office, San Francisco

    Google Scholar 

  20. Cvar J, Ryge G (2005) Reprint of criteria for the clinical evaluation of dental restorative materials. Clin Oral Invest 9:215–232

    Article  Google Scholar 

  21. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observation. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  22. Cehreli MC, Koekat AM, Ozpay C, Karasoy D, Akca K (2011) A randomized controlled clinical trial of feldsparthic versus glass-infiltrated alumina all-ceramic crowns: a 3-year follow-up. Int J Prosthodont 24:77–84

    PubMed  Google Scholar 

  23. Mclaren EA, White SN (2000) Survival of In-Ceram in a private practice: a prospective clinical trial. J Prosthet Dent 83:216–222

    Article  PubMed  Google Scholar 

  24. Scherrer SS, De Rijk WG, Wiskott HW, Belser UC (2001) Incidence of fractures and lifetime predictions of all-ceramic crown systems using censored data. Am J Dent 14:72–80

    PubMed  Google Scholar 

  25. Bindl A, Mörmann WH (2002) An up to 5-year clinical evaluation of posterior In-Ceram CAD/CAM core crowns. Int J Prosthodont 15:451–456

    PubMed  Google Scholar 

  26. Hüls A (1995) Zum Stand der klinischen Bewährung infiltrationskeramischer Verblendkronen. Dtsch Zahnarztl Z 50:674–676

    Google Scholar 

  27. Segal BS (2001) Retrospective assessment of 546 all-ceramic anterior and posterior crowns in a general practice. J Prosthet Dent 85:544–550

    Article  PubMed  Google Scholar 

  28. Proebster L (1997) Klinische Langzeiterfahrungen mit vollkeramischen Kronen aus In-Ceram. Quintessenz 48:1639–1646

    Google Scholar 

  29. Groten M, Axmann D, Proebster L, Weber H (2002) Vollkeramische Kronen und Brücken auf Basis industriell vorgefertigter Gerüstkeramiken. Quintessenz 53:1307–1316

    Google Scholar 

  30. Pjetursson BE, Sailer I, Zwahlen M, Hammerle CH (2007) A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: single crowns. Clin Oral Impl Res 18:73–85

    Article  Google Scholar 

  31. Kiliaridis S, Kjellberg H, Wennerberg B, Engstrom C (1993) The relationship between maximal bite force, bite force endurance, and facial morphology during growth. A cross-sectional study. Acta Odontol Scand 51:323–331

    Article  PubMed  Google Scholar 

  32. Bates JF, Stafford GD, Harrison A (1976) Masticatory function—a review of the literature. III. Masticatory performance and efficiency. J Oral Rehabil 3:57–67

    Article  PubMed  Google Scholar 

  33. Zhang Y, Lawn BR, Malament KA, Thompson VP, Rekow ED (2006) Damage accumulation and fatigue life of particle-abraded ceramics. Int J Prosthodont 19:442–448

    PubMed  Google Scholar 

  34. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY (2003) Clinical complications in fixed prosthodontics. J Prosthet Dent 90:31–41

    Article  PubMed  Google Scholar 

  35. Cortellini D, Canale A (2012) Bonding lithium disilicate ceramic to feather-edge tooth preparations: a minimally invasive treatment concept. J Adhes Dent 14:7–10

    PubMed  Google Scholar 

  36. Smith DC, Ruse ND (1986) Acidity of glass ionomer cements during setting and its relation to pulp sensitivity. J Am Dent Assoc 112:654–657

    PubMed  Google Scholar 

  37. Auschill TM, Koch CA, Wolkewitz M, Hellwig E, Arweiler NB (2009) Occurrence and causing stimuli of postoperative sensitivity in composite restorations. Oper Dent 34:3–10

    Article  PubMed  Google Scholar 

  38. Haselton DR, Diaz-Arnold AM, Hillis SL (2000) Clinical assessment of high-strength all-ceramic crowns. J Prosthet Dent 83:396–401

    Article  PubMed  Google Scholar 

  39. Reis A, Carrilho M, Breschi L, Loguercio A (2013) Overview of clinical alternatives to minimize the degradation of the resin–dentin bonds. Oper Dent 38:E1–E25

    Article  PubMed  Google Scholar 

  40. Reich S, Schierz O (2013) Chair-side generated posterior lithium disilicate crowns after 4 years. Clin Oral Investig 17:1765–1772

    Article  PubMed  Google Scholar 

  41. Gehrt M, Wolfart S, Rafai N, Reich S, Edelhoff D (2013) Clinical results of lithium-disilicate crowns after up to 9 years of service. Clin Oral Investig 17:275–284

    Article  PubMed  Google Scholar 

  42. Ortorp A, Kihl ML, Carlsson GE (2012) A 5-year retrospective study of survival of zirconia single crowns fitted in a private clinical setting. J Dent 40:527–530

    Article  PubMed  Google Scholar 

  43. Monaco C, Caldari M, Scotti R (2013) Clinical evaluation of 1,132 zirconia-based single crowns: a retrospective cohort study from the AIOP clinical research group. Int J Prosthodont 26:435–442

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

This study was financially supported by Sun Medical, Shiga, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra C. Guess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selz, C.F., Strub, J.R., Vach, K. et al. Long-term performance of posterior InCeram Alumina crowns cemented with different luting agents: a prospective, randomized clinical split-mouth study over 5 years. Clin Oral Invest 18, 1695–1703 (2014). https://doi.org/10.1007/s00784-013-1137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-1137-6

Keywords

Navigation