Skip to main content

Advertisement

Log in

Effect of sonic-activated resin composites on the repair of aged substrates: an in vitro investigation

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to evaluate whether sonic-activated resin-based composites (RBCs) used as repair materials might improve the repair bond strength of aged RBC substrates.

Materials and methods

Five RBCs were repaired by themselves and by all other materials. The repair was applied with and without sonic activation, resulting in 50 material application technique combinations (n = 15) and 750 specimens. The cohesive strength of the five materials was used as control (n = 15). Substrates were aged for 8 weeks in distilled water at 37 °C, roughened, cleaned with phosphoric acid, and repaired by using a silane primer and an adhesive as intermediate agents. The repair bond strength was assessed in a shear test. The modulus of elasticity (E) of the five RBCs was additionally evaluated in a three-point bending test.

Results

Results were compared using one- and multiple-way analyses of variance and Tukey’s honestly significant difference post hoc test (α = 0.05), partial eta-square statistics, Pearson’s correlation, and Weibull’s analysis. No significant effect of sonic activation on the repair material was found in any material combination. The repair strength was 35.4–90.9 % of the cohesive strength of the original composites. E varied between 4.1 GPa (CLEARFIL MAJESTY Esthetic) and 9.7 GPa (CLEARFIL MAJESTY Posterior). The strongest influence on the shear bond strength was performed by E repair (η 2 P = 0.167), whereas the effect of E substrate was significant but low (η 2 P = 0.098). None of these parameters influenced the reliability of the repaired specimens (the Weibull parameter, m). The fracture pattern was mainly cohesive (93.3 %) in the control group and predominantly adhesive (89.2 %) in the repaired specimens.

Conclusions

Except for the material with the highest modulus of elasticity used as a substrate material, it was not detrimental to combine different RBCs in terms of repair.

Clinical relevance

If a substrate material is unknown, the recommendation for repairing would be in favor of a material with a high modulus of elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tyas MJ, Anusavice KJ, Frencken JE, Mount GJ (2000) Minimal intervention dentistry—a review. FDI Commission Project 1–97. Int Dent J 50(1):1–12

    Article  PubMed  Google Scholar 

  2. Hickel R, Brushaver K, Ilie N (2013) Repair of restorations—criteria for decision making and clinical recommendations. Dent Mater: Off Publ Acad Dent Mater 29(1):28–50. doi:10.1016/j.dental.2012.07.006

    Article  Google Scholar 

  3. Gordan VV, Garvan CW, Blaser PK, Mondragon E, Mjoer IA (2009) A long-term evaluation of alternative treatments to replacement of resin-based composite restorations: results of a seven-year study. J Am Dent Assoc 140(12):1476–1484

    Article  PubMed  Google Scholar 

  4. Saunders WP (1990) Effect of fatigue upon the interfacial bond strength of repaired composite resins. J Dent 18(3):158–162

    Article  PubMed  Google Scholar 

  5. Soderholm KJ (1986) Flexure strength of repaired dental composites. Scand J Dent Res 94(4):364–369

    PubMed  Google Scholar 

  6. Mitsaki-Matsou H, Karanika-Kouma A, Papadoyiannis Y, Theodoridou-Pahine S (1991) An in vitro study of the tensile strength of composite resins repaired with the same or another composite resin. Quintessence Int 22(6):475–481

    PubMed  Google Scholar 

  7. Soderholm KJ, Roberts MJ (1991) Variables influencing the repair strength of dental composites. Scand J Dent Res 99(2):173–180

    PubMed  Google Scholar 

  8. Swift EJ Jr, Cloe BC, Boyer DB (1994) Effect of a silane coupling agent on composite repair strengths. Am J Dent 7(4):200–202

    PubMed  Google Scholar 

  9. Swift EJ Jr, LeValley BD, Boyer DB (1992) Evaluation of new methods for composite repair. Dent Mater: Off Publ Acad Dent Mater 8(6):362–365

    Article  Google Scholar 

  10. Cavalcanti AN, De Lima AF, Peris AR, Mitsui FH, Marchi GM (2007) Effect of surface treatments and bonding agents on the bond strength of repaired composites. J Esthet Restor Dent: Off Publ Am Acad Esthet Dent 19(2):90–98. doi:10.1111/j.1708-8240.2007.00073.x, discussion 99

    Article  Google Scholar 

  11. Loomans BA, Cardoso MV, Roeters FJ, Opdam NJ, De Munck J, Huysmans MC, Van Meerbeek B (2011) Is there one optimal repair technique for all composites? Dent Mater 27(7):701–709. doi:10.1016/j.dental.2011.03.013

    Article  PubMed  Google Scholar 

  12. Brosh T, Pilo R, Bichacho N, Blutstein R (1997) Effect of combinations of surface treatments and bonding agents on the bond strength of repaired composites. J Prosthet Dent 77(2):122–126

    Article  PubMed  Google Scholar 

  13. Ozcan M, Barbosa SH, Melo RM, Galhano GA, Bottino MA (2007) Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions. Dent Mater 23(10):1276–1282. doi:10.1016/j.dental.2006.11.007

    Article  PubMed  Google Scholar 

  14. Papacchini F, Magni E, Radovic I, Mazzitelli C, Monticellia F, Goracci C, Polimeni A, Ferrari M (2007) Effect of intermediate agents and pre-heating of repairing resin on composite-repair bonds. Oper Dent 32(4):363–371. doi:10.2341/06-105

    Article  PubMed  Google Scholar 

  15. Rathke A, Tymina Y, Haller B (2009) Effect of different surface treatments on the composite-composite repair bond strength. Clin Oral Investig 13(3):317–323. doi:10.1007/s00784-008-0228-2

    Article  PubMed  Google Scholar 

  16. Ivanovas S, Hickel R, Ilie N (2011) How to repair fillings made by silorane-based composites. Clin Oral Investig 15(6):915–922. doi:10.1007/s00784-010-0473-z

    Article  PubMed  Google Scholar 

  17. Baur V, Ilie N (2012) Repair of dental resin-based composites. Clin Oral Investig. doi:10.1007/s00784-012-0722-4

    PubMed  Google Scholar 

  18. Papacchini F, Radovic I, Magni E, Goracci C, Monticelli F, Chieffi N, Polimeni A, Ferrari M (2008) Flowable composites as intermediate agents without adhesive application in resin composite repair. Am J Dent 21(1):53–58

    PubMed  Google Scholar 

  19. Frankenberger R, Kramer N, Ebert J, Lohbauer U, Kappel S, ten Weges S, Petschelt A (2003) Fatigue behavior of the resin-resin bond of partially replaced resin-based composite restorations. Am J Dent 16(1):17–22

    PubMed  Google Scholar 

  20. Ilie N, Hickel R (2009) Investigations on mechanical behaviour of dental composites. Clin Oral Investig 13(4):427–438. doi:10.1007/s00784-009-0258-4

    Article  PubMed  Google Scholar 

  21. Brendeke J, Ozcan M (2007) Effect of physicochemical aging conditions on the composite-composite repair bond strength. J Adhes Dent 9(4):399–406

    PubMed  Google Scholar 

  22. Rodrigues SA Jr, Ferracane JL, Della Bona A (2009) Influence of surface treatments on the bond strength of repaired resin composite restorative materials. Dent Mater 25(4):442–451. doi:10.1016/j.dental.2008.09.009

    Article  PubMed  Google Scholar 

  23. Maneenut C, Sakoolnamarka R, Tyas MJ (2011) The repair potential of resin composite materials. Dent Mater 27(2):e20–e27. doi:10.1016/j.dental.2010.09.006

    Article  PubMed  Google Scholar 

  24. Rinastiti M, Ozcan M, Siswomihardjo W, Busscher HJ (2011) Effects of surface conditioning on repair bond strengths of non-aged and aged microhybrid, nanohybrid, and nanofilled composite resins. Clin Oral Investig 15(5):625–633. doi:10.1007/s00784-010-0426-6

    Article  PubMed Central  PubMed  Google Scholar 

  25. Frankenberger R, Roth S, Kramer N, Pelka M, Petschelt A (2003) Effect of preparation mode on class II resin composite repair. J Oral Rehabil 30(6):559–564

    Article  PubMed  Google Scholar 

  26. Teixeira EC, Bayne SC, Thompson JY, Ritter AV, Swift EJ (2005) Shear bond strength of self-etching bonding systems in combination with various composites used for repairing aged composites. J Adhes Dent 7(2):159–164

    PubMed  Google Scholar 

  27. Rinastiti M, Ozcan M, Siswomihardjo W, Busscher HJ, van der Mei HC (2010) Effect of biofilm on the repair bond strengths of composites. J Dent Res 89(12):1476–1481. doi:10.1177/0022034510381395

    Article  PubMed  Google Scholar 

  28. Hahnel S, Henrich A, Burgers R, Handel G, Rosentritt M (2010) Investigation of mechanical properties of modern dental composites after artificial aging for one year. Oper Dent 35(4):412–419. doi:10.2341/09-337-L

    Article  PubMed  Google Scholar 

  29. Ilie N, Bucuta S, Draenert M (2013) Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent. doi:10.2341/12-395-L

    Google Scholar 

  30. Boyer DB, Chan KC, Reinhardt JW (1984) Build-up and repair of light-cured composites: bond strength. J Dent Res 63(10):1241–1244

    Article  PubMed  Google Scholar 

  31. Ilie N, Hickel R (2009) Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites. Dent Mater: Off Publ Acad Dent Mater 25(6):810–819. doi:10.1016/j.dental.2009.02.005

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoleta Ilie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilie, N., Oberthür, MT. Effect of sonic-activated resin composites on the repair of aged substrates: an in vitro investigation. Clin Oral Invest 18, 1605–1612 (2014). https://doi.org/10.1007/s00784-013-1136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-1136-7

Keywords

Navigation