Skip to main content

Accuracy of digital and conventional impression techniques and workflow



Digital impression techniques are advertised as an alternative to conventional impressioning. The purpose of this in vitro study was to compare the accuracy of full ceramic crowns obtained from intraoral scans with Lava C.O.S. (3M ESPE), CEREC (Sirona), and iTero (Straumann) with conventional impression techniques.

Materials and methods

A model of a simplified molar was fabricated. Ten 2-step and 10 single-step putty-wash impressions were taken using silicone impression material and poured with type IV plaster. For both techniques 10 crowns were made of two materials (Lava zirconia, Cera E cast crowns). Then, 10 digital impressions (Lava C.O.S.) were taken and Lava zirconia crowns manufactured, 10 full ceramic crowns were fabricated with CEREC (Empress CAD) and 10 full ceramic crowns were made with iTero (Copran Zr-i). The accessible marginal inaccuracy (AMI) and the internal fit (IF) were measured.


For AMI, the following results were obtained (mean ± SD): overall groups, 44 ± 26 μm; single-step putty-wash impression (Lava zirconia), 33 ± 19 μm; single-step putty-wash impression (Cera-E), 38 ± 25 μm; two-step putty-wash impression (Lava zirconia), 60 ± 30 μm; two-step putty-wash impression (Cera-E), 68 ± 29 μm; Lava C.O.S., 48 ± 25 μm; CEREC, 30 ± 17 μm; and iTero, 41 ± 16 μm. With regard to IF, errors were assessed as follows (mean ± SD): overall groups, 49 ± 25 μm; single-step putty-wash impression (Lava zirconia), 36 ± 5 μm; single-step putty-wash impression (Cera-E), 44 ± 22 μm; two-step putty-wash impression (Lava zirconia), 35 ± 7 μm; two-step putty-wash impression (Cera-E), 56 ± 36 μm; Lava C.O.S., 29 ± 7 μm; CEREC, 88 ± 20 μm; and iTero, 50 ± 2 μm.


Within the limitations of this in vitro study, it can be stated that digital impression systems allow the fabrication of fixed prosthetic restorations with similar accuracy as conventional impression methods.

Clinical relevance

Digital impression techniques can be regarded as a clinical alternative to conventional impressions for fixed dental restorations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Samet N, Shohat M, Livny A, Weiss EI (2005) A clinical evaluation of fixed partial denture impressions. J Prosthet Dent 94(2):112–117

    PubMed  Article  Google Scholar 

  2. 2.

    Mehl A, Ender A, Mormann W, Attin T (2009) Accuracy testing of a new intraoral 3D camera. Int J Comput Dent 12(1):11–28

    PubMed  Google Scholar 

  3. 3.

    Syrek A, Reich G, Ranftl D, Klein C, Cerny B, Brodesser J (2010) Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling. J Dent 38(7):553–559

    PubMed  Article  Google Scholar 

  4. 4.

    Mormann WH, Brandestini M, Lutz F (1987) The Cerec system: computer-assisted preparation of direct ceramic inlays in 1 setting. Quintessenz 38(3):457–470

    PubMed  Google Scholar 

  5. 5.

    Lee KB, Park CW, Kim KH, Kwon TY (2008) Marginal and internal fit of all-ceramic crowns fabricated with two different CAD/CAM systems. Dent Mater J 27(3):422–426

    PubMed  Article  Google Scholar 

  6. 6.

    Tinschert J, Natt G, Spiekermann H, Anusavice K (2001) Marginal fit of alumina- and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 26(4):367–374

    PubMed  Google Scholar 

  7. 7.

    Suarez MJ, Gonzalez de Villaumbrosia P, Pradies G, Lozano JF (2003) Comparison of the marginal fit of Procera AllCeram crowns with two finish lines. Int J Prosthodont 16(3):229–232

    PubMed  Google Scholar 

  8. 8.

    Bindl A, Mormann WH (2005) Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations. J Oral Rehabil 32(6):441–447

    PubMed  Article  Google Scholar 

  9. 9.

    Schaefer O, Watts DC, Sigusch BW, Kuepper H, Guentsch A (2012) Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dent Mater 28(3):320–326

    PubMed  Article  Google Scholar 

  10. 10.

    Grasso JE, Nalbandian J, Sanford C, Bailit H (1985) Effect of restoration quality on periodontal health. J Prosthet Dent 53(1):14–19

    PubMed  Article  Google Scholar 

  11. 11.

    Holmes JR, Bayne SC, Holland GA, Sulik WD (1989) Considerations in measurement of marginal fit. J Prosthet Dent 62(4):405–408

    PubMed  Article  Google Scholar 

  12. 12.

    Luthardt RG, Loos R, Quaas S (2005) Accuracy of intraoral data acquisition in comparison to the conventional impression. Int J Comput Dent 8(4):283–294

    PubMed  Google Scholar 

  13. 13.

    Bindl A, Windisch S, Mormann WH (1999) Full-ceramic CAD/CIM anterior crowns and copings. Int J Comput Dent 2(2):97–111

    PubMed  Google Scholar 

  14. 14.

    da Costa JB (2010) Evaluation of different methods of optical impression making on the marginal gap of onlays created with CEREC 3D. Oper Dent 35(3):324–329

    PubMed  Article  Google Scholar 

  15. 15.

    Ender A, Mehl A (2011) Full arch scans: conventional versus digital impressions—an in vitro study. Int J Comput Dent 14(1):11–21

    PubMed  Google Scholar 

  16. 16.

    Phark J, Oliveira AL (2012) Marginal fit of all-ceramic crowns using conventional and digital impressions. J Dent Res 91 (Spec Iss A):991.

  17. 17.

    Kim M, Song H, Heo S (2012) Accuracy of an intraoral digital impression using parallel confocal imaging. J Dent Res 91 (Spec Iss B):995.

  18. 18.

    Kachalia PR, Geissberger MJ (2010) Dentistry a la carte: in-office CAD/CAM technology. J Calif Dent Assoc 38(5):323–330

    PubMed  Google Scholar 

  19. 19.

    Idris B, Houston F, Claffey N (1995) Comparison of the dimensional accuracy of one- and two-step techniques with the use of putty/wash addition silicone impression materials. J Prosthet Dent 74(5):535–541

    PubMed  Article  Google Scholar 

  20. 20.

    Wostmann B, Blosser T, Gouentenoudis M, Balkenhol M, Ferger P (2005) Influence of margin design on the fit of high-precious alloy restorations in patients. J Dent 33(7):611–618

    PubMed  Article  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest.

Author information



Corresponding author

Correspondence to Paul Seelbach.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seelbach, P., Brueckel, C. & Wöstmann, B. Accuracy of digital and conventional impression techniques and workflow. Clin Oral Invest 17, 1759–1764 (2013).

Download citation


  • Digital impression
  • Intraoral scanning
  • Dental impression
  • Lava