Skip to main content

Advertisement

Log in

Lipids in preventive dentistry

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

There is still a great demand for the improvement of oral prophylaxis methods. One repeatedly described approach is rinsing with edible oils. The aim of the present review paper was to analyze the role of lipids in bioadhesion and preventive dentistry.

Materials and methods

Despite limited sound scientific data, extensive literature search was performed to illustrate possible effects of lipids in the oral cavity.

Results

It is to be assumed that lipophilic components modulate the process of bioadhesion to the oral hard tissues as well as the composition and ultrastructure of the initial oral biofilm or the pellicle, respectively. Thereby, lipids could add hydrophobic characteristics to the tooth surface hampering bacterial colonization and eventually decreasing caries susceptibility. Also, a lipid-enriched pellicle might be more resistant in case of acid exposure and could therefore reduce the erosive mineral loss. Furthermore, anti-inflammatory effects on the oral soft tissues were described. However, there is only limited evidence for these beneficial impacts. Neither the lipid composition of saliva and pellicle nor the interactions of lipids with the initial oral biofilm and the pellicle layer have been investigated adequately until now.

Conclusion

Edible oils might qualify as mild supplements to conventional strategies for the prevention of caries, erosion, and periodontal diseases but further research is necessary.

Clinical relevance

Against the background of current scientific and empirical knowledge, edible oils might be used as oral hygiene supplements but a decisive benefit for the oral health status is questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saekel R (2010) China’s oral care system in transition: lessons to be learned from Germany. Int J Oral Sci 2:158–176

    Article  PubMed  Google Scholar 

  2. Blinkhorn AS, Davies RM (1996) Caries prevention. A continued need worldwide. Int Dent J 46:119–125

    PubMed  Google Scholar 

  3. Holtfreter B, Kocher T, Hoffmann T, Desvarieux M, Micheelis W (2010) Prevalence of periodontal disease and treatment demands based on a German dental survey (DMS IV). J Clin Periodontol 37:211–219

    Article  PubMed  Google Scholar 

  4. Bagramian RA, Garcia-Godoy F, Volpe AR (2009) The global increase in dental caries. A pending public health crisis. Am J Dent 22:3–8

    PubMed  Google Scholar 

  5. Hannig M (1999) Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin Oral Investig 3:88–95

    Article  PubMed  Google Scholar 

  6. Marthaler TM (2004) Changes in dental caries 1953–2003. Caries Res 38:173–181

    Article  PubMed  Google Scholar 

  7. Ostberg AL, Ericsson JS, Wennstrom JL, Abrahamsson KH (2010) Socio-economic and lifestyle factors in relation to priority of dental care in a Swedish adolescent population. Swed Dent J 34:87–94

    PubMed  Google Scholar 

  8. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C (2005) The global burden of oral diseases and risks to oral health. Bull World Health Organ 83:661–669

    PubMed  Google Scholar 

  9. Mahoney EK, Kilpatrick NM (2003) Dental erosion: part 1. Aetiology and prevalence of dental erosion. N Z Dent J 99:33–41

    PubMed  Google Scholar 

  10. Featherstone JD, Lussi A (2006) Understanding the chemistry of dental erosion. Monogr Oral Sci 20:66–76

    Article  PubMed  Google Scholar 

  11. Wiegand A, Attin T (2007) Occupational dental erosion from exposure to acids: a review. Occup Med (Lond) 57:169–176

    Article  Google Scholar 

  12. Lussi A, Jaeggi T, Zero D (2004) The role of diet in the aetiology of dental erosion. Caries Res 38(Suppl 1):34–44

    Article  PubMed  Google Scholar 

  13. Bundesamt S (2011) [Demografic change in Germany—population and budgetary development of federal goverment and states.] Demografischer Wandel in Deutschland—Bevölkerungs und Haushaltsentwicklung im Bund und in den Ländern. Statistische Ämter des Bundes und der Länder 1:8–17

    Google Scholar 

  14. Petersen PE, Kandelman D, Arpin S, Ogawa H (2010) Global oral health of older people—call for public health action. Community Dent Health 27:257–267

    PubMed  Google Scholar 

  15. Mccreary C, Ni Riordain R (2010) Systemic diseases and the elderly. Dent Update 37:604–607

    PubMed  Google Scholar 

  16. Slomiany BL, Witas H, Murty VLN, Slomiany A, Mandel ID (1983) Association of lipids with proteins and glycoproteins in human saliva. J Dent Res 62:24–27

    Article  PubMed  Google Scholar 

  17. Slomiany BL, Murty VLN, Slomiany A (1985) Salivary lipids in health and disease. Prog Lipid Res 24:311–324

    Article  PubMed  Google Scholar 

  18. Lanzos I, Herrera D, Santos S, O’connor A, Pena C, Lanzos E, Sanz M (2010) Mucositis in irradiated cancer patients: effects of an antiseptic mouthrinse. Med Oral Patol Oral Cir Bucal 15:e732–e738

    Article  PubMed  Google Scholar 

  19. Satheeshkumar PS, Chamba MS, Balan A, Sreelatha KT, Bhatathiri VN, Bose T (2010) Effectiveness of triclosan in the management of radiation-induced oral mucositis: a randomized clinical trial. J Cancer Res Ther 6:466–472

    Article  PubMed  Google Scholar 

  20. Potting CM, Uitterhoeve R, Op Reimer WS, Van Achterberg T (2006) The effectiveness of commonly used mouthwashes for the prevention of chemotherapy-induced oral mucositis: a systematic review. Eur J Cancer Care (Engl) 15:431–439

    Article  Google Scholar 

  21. Hannig M, Fiebiger M, Guntzer M, Dobert A, Zimehl R, Nekrashevych Y (2004) Protective effect of the in situ formed short-term salivary pellicle. Arch Oral Biol 49:903–910

    Article  PubMed  Google Scholar 

  22. Hannig C, Hannig M (2009) The oral cavity-a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin Oral Investig 13:123–139

    Article  PubMed  Google Scholar 

  23. Marsh PD, Bradshaw DJ (1995) Dental plaque as a biofilm. J Ind Microbiol 15:169–175

    Article  PubMed  Google Scholar 

  24. Hannig M, Joiner A (2006) The structure, function and properties of the acquired pellicle. Monogr Oral Sci 19:29–64

    PubMed  Google Scholar 

  25. Nekrashevych Y, Hannig M, Stosser L (2004) Assessment of enamel erosion and protective effect of salivary pellicle by surface roughness analysis and scanning electron microscopy. Oral Health Prev Dent 2:5–11

    PubMed  Google Scholar 

  26. Busscher HJ, Van Der Mei HC (1997) Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res 11:24–32

    Article  PubMed  Google Scholar 

  27. Gibbons RJ, Etherden I (1983) Comparative hydrophobicities of oral bacteria and their adherence to salivary pellicles. Infect Immun 41:1190–1196

    PubMed  Google Scholar 

  28. Busscher HJ, Rinastiti M, Siswomihardjo W, Van Der Mei HC (2010) Biofilm formation on dental restorative and implant materials. J Dent Res 89:657–665

    Article  PubMed  Google Scholar 

  29. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Arends J, Darius PL, Van Steenberghe D (1989) The influence of surface free-energy on planimetric plaque growth in man. J Dent Res 68:796–799

    Article  PubMed  Google Scholar 

  30. Scannapieco FA, Torres G, Levine MJ (1993) Salivary alpha-amylase: role in dental plaque and caries formation. Crit Rev Oral Biol Med 4:301–307

    PubMed  Google Scholar 

  31. Hannig C, Hannig M, Attin T (2005) Enzymes in the acquired enamel pellicle. Eur J Oral Sci 113:2–13

    Article  PubMed  Google Scholar 

  32. Buzalaf MA, Pessan JP, Honorio HM, Ten Cate JM (2011) Mechanisms of action of fluoride for caries control. Monogr Oral Sci 22:97–114

    Article  PubMed  Google Scholar 

  33. Van Der Mei HC, Engels E, De Vries J, Busscher HJ (2008) Effects of amine fluoride on biofilm growth and salivary pellicles. Caries Res 42:19–27

    Article  PubMed  Google Scholar 

  34. Crall JJ (2011) Improving oral health and oral health care delivery for children. J Calif Dent Assoc 39:90–100

    PubMed  Google Scholar 

  35. Adams D, Addy M (1994) Mouthrinses. Adv Dent Res 8:291–301

    PubMed  Google Scholar 

  36. Moshrefi A (2002) Chlorhexidine. J West Soc Periodontol Periodontal Abstr 50:5–9

    PubMed  Google Scholar 

  37. Hannig M, Hannig C (2010) Nanomaterials in preventive dentistry. Nat Nanotechnol 5:565–569

    Article  PubMed  Google Scholar 

  38. Koga T, Oho T, Shimazaki Y, Nakano Y (2002) Immunization against dental caries. Vaccine 20:2027–2044

    Article  PubMed  Google Scholar 

  39. Hillman JD, Brooks TA, Michalek SM, Harmon CC, Snoep JL, Van Der Weijden CC (2000) Construction and characterization of an effector strain of Streptococcus mutans for replacement therapy of dental caries. Infect Immun 68:543–549

    Article  PubMed  Google Scholar 

  40. Teughels W, Van Assche N, Sliepen I, Quirynen M (2006) Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 17(Suppl 2):68–81

    Article  PubMed  Google Scholar 

  41. Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC (2010) New approaches to enhanced remineralization of tooth enamel. J Dent Res 89:1187–1197

    Article  PubMed  Google Scholar 

  42. Murphy VE, Mynett-Johnson LA, Claffey E, Shields DC, Mckeon P (2001) No association between 5HT-2A and bipolar disorder irrespective of genomic imprinting. Am J Med Genet 105:422–425

    Article  PubMed  Google Scholar 

  43. Hannig C, Sorg J, Spitzmüller B, Hannig M, Al-Ahmad A (2009) Polyphenolic beverages reduce initial bacterial adherence to enamel in situ. J Dent 37:560–566

    Article  PubMed  Google Scholar 

  44. Ehrhardt C, Hrincius ER, Korte V, Mazur I, Droebner K, Poetter A, Dreschers S, Schmolke M, Planz O, Ludwig S (2007) A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiviral Res 76:38–47

    Article  PubMed  Google Scholar 

  45. Kealey C, Reynolds A, Mynett-Johnson L, Claffey E, Mckeon P (2001) No evidence to support an association between the oestrogen receptor beta gene and bipolar disorder. Psychiatr Genet 11:223–226

    Article  PubMed  Google Scholar 

  46. Hannig C, Spitzmüller B, Al-Ahmad A, Hannig M (2008) Effects of Cistus-tea on bacterial colonization and enzyme activities of the in situ pellicle. J Dent 36:540–545

    Article  PubMed  Google Scholar 

  47. Asokan S, Emmadi P, Chamundeswari R (2009) Effect of oil pulling on plaque induced gingivitis: a randomized, controlled, triple-blind study. Indian J Dent Res 20:47–51

    Article  PubMed  Google Scholar 

  48. Hannig C, Kirsch J, Al-Ahmad A, Kensche A, Hannig M, Kümmerer K (2012) Do edible oils reduce bacterial colonization of enamel in situ? Clin Oral Investig (in press)

  49. Hannig C, Wagenschwanz C, Pötschke S, Kümmerer K, Kensche A, Hoth-Hannig W, Hannig M (2012) Effect of safflower oil on the protective properties of the in situ pellicle. Caries Res 46(5):496–506

    Article  PubMed  Google Scholar 

  50. Asokan S, Rathinasamy TK, Inbamani N, Menon T, Kumar SS, Emmadi P, Raghuraman R (2011) Mechanism of oil-pulling therapy—in vitro study. Indian J Dent Res 22:34–37

    Article  PubMed  Google Scholar 

  51. Christie W (1989) Gas chromatography and lipids: a practical guide. The Oily Press, Dundee

    Google Scholar 

  52. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W et al (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    Article  PubMed  Google Scholar 

  53. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, Spener F, Van Meer G, Wakelam MJO, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14

    Article  PubMed  Google Scholar 

  54. Fisher N (1954) Lipid nomenclature. Nature 173:874

    Article  PubMed  Google Scholar 

  55. Hutt HH (1955) Lipid nomenclature. Nature 175:303–304

    Article  PubMed  Google Scholar 

  56. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed  Google Scholar 

  57. Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98

    Article  PubMed  Google Scholar 

  58. Feingold KR (2009) The outer frontier: the importance of lipid metabolism in the skin. J Lipid Res 50(Suppl):S417–S422

    Article  PubMed  Google Scholar 

  59. Aylsworth CF, Welsch CW, Kabara JJ, Trosko JE (1987) Effects of fatty acids on gap junctional communication: possible role in tumor promotion by dietary fat. Lipids 22:445–454

    Article  PubMed  Google Scholar 

  60. Olsson J, Van Der Heijde Y, Holmberg K (1992) Plaque formation in vivo and bacterial attachment in vitro on permanently hydrophobic and hydrophilic surfaces. Caries Res 26:428–433

    Article  PubMed  Google Scholar 

  61. Lassen B, Holmberg K, Brink C, Carlen A, Olsson J (1994) Binding of salivary proteins and oral bacteria to hydrophobic and hydrophilic surfaces in vivo and in vitro. Colloid Polym Sci 272:1143–1150

    Article  Google Scholar 

  62. Everaert EP, Van De Belt-Gritter B, Van Der Mei HC, Busscher HJ, Verkerke GJ, Dijk F, Mahieu HF, Reitsma A (1998) In vitro and in vivo microbial adhesion and growth on argon plasma-treated silicone rubber voice prostheses. J Mater Sci Mater Med 9:147–157

    Article  PubMed  Google Scholar 

  63. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Arends J, Darius PL, Vansteenberghe D (1989) The influence of surface free-energy on planimetric plaque growth in man. J Dent Res 68:796–799

    Article  PubMed  Google Scholar 

  64. Rykke M, Rölla G (1990) Effect of silicone oil on protein adsorption to hydroxyapatite in vitro and on pellicle formation in vivo. Scand J Dent Res 98:401–411

    PubMed  Google Scholar 

  65. Grivet M, Morrier JJ, Benay G, Barsotti O (2000) Effect of hydrophobicity on in vitro streptococcal adhesion to dental alloys. J Mater Sci Mater Med 11:637–642

    Article  PubMed  Google Scholar 

  66. Van Der Mei HC, White DJ, Kamminga-Rasker HJ, Knight J, Baig AA, Smit J, Busscher HJ (2002) Influence of dentifrices and dietary components in saliva on wettability of pellicle-coated enamel in vitro and in vivo. Eur J Oral Sci 110:434–438

    Article  PubMed  Google Scholar 

  67. Schachtele CF, Harlander SK, Bracke JW, Ostrum LC, JaB M, Billings RJ (1978) Streptococcus mutans dextransucrase—stimulation by phospholipids from human sera and oral fluids. Infect Immun 22:714–720

    PubMed  Google Scholar 

  68. Norde W, Lyklema J (1989) Protein adsorption and bacterial adhesion to solid-surfaces—a colloid-chemical approach. Colloid Surf 38:1–13

    Article  Google Scholar 

  69. Hamazaki K, Itomura M, Sawazaki S, Hamazaki T (2006) Fish oil reduces tooth loss mainly through its anti-inflammatory effects? Med Hypotheses 67:868–870

    Article  PubMed  Google Scholar 

  70. Asokan S, Rathan J, Muthu MS, Rathna PV, Emmadi P (2008) Effect of oil pulling on Streptococcus mutans count in plaque and saliva using Dentocult SM strip mutans test: a randomized, controlled, triple-blind study. J Indian Soc Pedod Prev Dent 26:12–17

    Article  PubMed  Google Scholar 

  71. Drake DR, Brogden KA, Dawson DV, Wertz PW (2008) Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res 49:4–11

    Article  PubMed  Google Scholar 

  72. Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2:23–28

    Article  PubMed  Google Scholar 

  73. Amerongen AVN, Veerman ECI (2002) Saliva—the defender of the oral cavity. Oral Diseases 8:12–22

    Article  PubMed  Google Scholar 

  74. Slomiany BL, Murty VLN, Aono M, Slomiany A, Mandel ID (1982) Lipid-composition of human-parotid and sub-mandibular saliva from caries-resistant and caries-susceptible adults. Arch Oral Biol 27:803–808

    Article  PubMed  Google Scholar 

  75. Slomiany A, Slomiany BL, Mandel ID (1981) Lipid-composition of human-parotid saliva from light and heavy dental calculus-formers. Arch Oral Biol 26:151–152

    Article  PubMed  Google Scholar 

  76. Larsson B, Olivecrona G, Ericson T (1996) Lipids in human saliva. Arch Oral Biol 41:105–110

    Article  PubMed  Google Scholar 

  77. Tomita Y, Miyake N, Yamanaka S (2008) Lipids in human parotid saliva with regard to caries experience. J Oleo Sci 57:115–121

    Article  PubMed  Google Scholar 

  78. Slomiany BL, Murty VLN, Liau YH, Slomiany A (1987) Animal glycoglycerolipids. Prog Lipid Res 26:29–51

    Article  PubMed  Google Scholar 

  79. Slomiany BL, Zdebska E, Murty VLN, Slomiany A, Petropoulou K, Mandel ID (1983) Lipid-composition of human labial salivary-gland secretions. Arch Oral Biol 28:711–714

    Article  PubMed  Google Scholar 

  80. Slomiany BL, Aono M, Murty VLN, Slomiany A, Levine MJ, Tabak LA (1982) Lipid-composition of sub-mandibular saliva from normal and cystic-fibrosis individuals. J Dent Res 61:1163–1166

    Article  PubMed  Google Scholar 

  81. Murray PA, Prakobphol A, Lee T, Hoover CI, Fisher SJ (1992) Adherence of oral streptococci to salivary glycoproteins. Infect Immun 60:31–38

    PubMed  Google Scholar 

  82. Amerongen AVN, Bolscher JGM, Veerman ECI (1995) Salivary mucins: protective functions in relation to their diversity. Glycobiology 5:733–740

    Article  PubMed  Google Scholar 

  83. Slomiany BL, Murty VLN, Piotrowski J, Slomiany A (1996) Salivary mucins in oral mucosal defense. Gen Pharmacol 27:761–771

    Article  PubMed  Google Scholar 

  84. Slomiany BL, Piotrowski J, Czajkowski A, Shovlin FE, Slomiany A (1993) differential expression of salivary mucin bacterial aggregating activity with caries status. Int J Biochem 25:935–940

    Article  PubMed  Google Scholar 

  85. Slomiany BL, Murty VLN, Slomiany A, Zielenski J, Mandel ID (1986) Mucus glycoprotein of human-saliva—differences in the associated and covalently bound lipids with caries. Biochim Biophys Acta 882:18–28

    Article  PubMed  Google Scholar 

  86. Slomiany BL, Zdebska E, Murty VLN, Slomiany A, Mandel ID (1984) Lipid composition of human pellicle. J Dent Res 63:271

    Google Scholar 

  87. Slomiany BL, Murty VLN, Mandel ID, Sengupta S, Slomiany A (1990) Effect of lipids on the lactic-acid retardation capacity of tooth enamel and cementum pellicles formed invitro from saliva of caries-resistant and caries-susceptible human adults. Arch Oral Biol 35:175–180

    Article  PubMed  Google Scholar 

  88. Slomiany BL, Murty VLN, Zdebska E, Slomiany A, Gwozdzinski K, Mandel ID (1986) Tooth surface-pellicle lipids and their role in the protection of dental enamel against lactic-acid diffusion in man. Arch Oral Biol 31:187–191

    Article  PubMed  Google Scholar 

  89. Christie W, Han X (1993) Lipid analysis: isolation, separation, identification and lipidomic analysis. The Oily Press, Bridgewater

    Google Scholar 

  90. Carrasco-Pancorbo A, Navas-Iglesias N, Cuadros-Rodriguez L (2009) From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part 1: modern lipid analysis. Trac-Trend Anal Chem 28:263–278

    Article  Google Scholar 

  91. Peterson BL, Cummings BS (2006) A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed Chromatogr 20:227–243

    Article  PubMed  Google Scholar 

  92. Fuchs B, Suss R, Teuber K, Eibisch M, Schiller J (2011) Lipid analysis by thin-layer chromatography—a review of the current state. J Chromatogr A 1218:2754–2774

    Article  PubMed  Google Scholar 

  93. Milne S, Ivanova P, Forrester J, Brown HA (2006) Lipidomics: an analysis of cellular lipids by ESI-MS. Methods 39:92–103

    Article  PubMed  Google Scholar 

  94. Gunstone F, Shulkla V (1995) NMR of lipids. In: Annual reports on NMR spectroscopy. New York: Elsevier 219–237

  95. Christie W (1993) Advances in lipid methodology. The Oily Press, Dundee

    Google Scholar 

  96. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  Google Scholar 

  97. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  Google Scholar 

  98. Doubleday A (1909) Plodding toward diagnosis by salivary analysis. The Dental Cosmos 51:412–421

    Google Scholar 

  99. Hannig M, Khanafer AK, Hoth-Hannig W, Al-Marrawi F, Acil Y (2005) Transmission electron microscopy comparison of methods for collecting in situ formed enamel pellicle. Clin Oral Investig 9:30–37

    Article  PubMed  Google Scholar 

  100. Reich M, Hannig C, Al-Ahmad A, Bolek R, Kümmerer K (2012) A comprehensive method for determination of fatty acids in the initial oral biofilm (pellicle). J Lipid Res (in press)

  101. Gunstone FD (2002) Vegetable oils in food technology: composition, properties and uses. Blackwell, Dundee

    Google Scholar 

  102. Buttriss J (2001) The health benefits of eating foods containing omega-3 fatty acids. Prof Nurse 17:199–201

    PubMed  Google Scholar 

  103. De Lorgeril M, Salen P (2006) The Mediterranean-style diet for the prevention of cardiovascular diseases. Public Health Nutr 9:118–123

    Article  PubMed  Google Scholar 

  104. Krist S, Buchbauer G, Klausberger C (2008) [Encyclopaedia of vegetable fats and oils.] Lexikon der pflanzlichen Fette und Öle. Springer, Wien

    Google Scholar 

  105. Kiokias S, Varzakas T, Oreopoulou V (2008) In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems. Crit Rev Food Sci 48:78–93

    Article  Google Scholar 

  106. Sridevi N, Venkataraman P, Senthilkumar K, Krishnamoorthy G, Arunakaran J (2007) Oxidative stress modulates membrane bound ATPases in brain regions of PCB (Aroclor 1254) exposed rats: protective role of alpha-tocopherol. Biomed Pharmacother 61:435–440

    Article  PubMed  Google Scholar 

  107. Andrikopoulos NK, Kaliora AC, Assimopoulou AN, Papageorgiou VP (2002) Inhibitory activity of minor polyphenolic and nonpolyphenolic constituents of olive oil against in vitro low-density lipoprotein oxidation. J Med Food 5:1–7

    Article  PubMed  Google Scholar 

  108. Smullen J, Koutsou GA, Foster HA, Zumbe A, Storey DM (2007) The antibacterial activity of plant extracts containing polyphenols against Streptococcus mutans. Caries Res 41:342–349

    Article  PubMed  Google Scholar 

  109. Bedoya LM, Bermejo P, Abad MJ (2009) Anti-infectious activity in the cistaceae family in the Iberian Peninsula. Mini-Rev Med Chem 9:519–525

    Article  PubMed  Google Scholar 

  110. Visioli F, Bernardini E (2011) Extra virgin olive oil’s polyphenols: biological activities. Curr Pharm Design 17:786–804

    Article  Google Scholar 

  111. Johnson EJ, Schaefer EJ (2006) Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration. Am J Clin Nutr 83:1494S–1498S

    PubMed  Google Scholar 

  112. Adkins Y, Kelley DS (2010) Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem 21:781–792

    Article  PubMed  Google Scholar 

  113. Grenon SM, Hughes-Fulford M, Rapp J, Conte MS (2012) Polyunsaturated fatty acids and peripheral artery disease. Vasc Med 17:51–63

    Article  PubMed  Google Scholar 

  114. Solfrizzi V, Panza F, Torres F, Mastroianni F, Del Parigi A, Venezia A, Capurso A (1999) High monounsaturated fatty acids intake protects against age-related cognitive decline. Neurology 52:1563–1569

    Article  PubMed  Google Scholar 

  115. Frisardi V, Panza F, Seripa D, Imbimbo BP, Vendemiale G, Pilotto A, Solfrizzi V (2010) Nutraceutical properties of Mediterranean diet and cognitive decline: possible underlying mechanisms. J Alzheimers Dis 22:715–740

    PubMed  Google Scholar 

  116. Merle B, Delyfer MN, Korobelnik JF, Rougier MB, Colin J, Malet F, Feart C, Le Goff M, Dartigues JF, Barberger-Gateau P et al (2011) Dietary omega-3 fatty acids and the risk for age-related maculopathy: the Alienor Study. Invest Ophthalmol Vis Sci 52:6004–6011

    Article  PubMed  Google Scholar 

  117. Gerber M (2012) Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies. Br J Nutr 107(Suppl 2):S228–S239

    Article  PubMed  Google Scholar 

  118. Shenoy RR, Sudheendra AT, Nayak PG, Paul P, Kutty NG, Rao CM (2011) Normal and delayed wound healing is improved by sesamol, an active constituent of Sesamum indicum (L.) in albino rats. J Ethnopharmacol 133:608–612

    Article  PubMed  Google Scholar 

  119. Namiki M (2007) Nutraceutical functions of sesame: a review. Crit Rev Food Sci 47:651–673

    Article  Google Scholar 

  120. O’donovan MC, Guy C, Craddock N, Bowen T, Mckeon P, Macedo A, Maier W, Wildenauer D, Aschauer HN, Sorbi S et al (1996) Confirmation of association between expanded CAG/CTG repeats and both schizophrenia and bipolar disorder. Psychol Med 26:1145–1153

    Article  PubMed  Google Scholar 

  121. Tiwari BK, Valdramidis VP, O’donnell CP, Muthukumarappan K, Bourke P, Cullen PJ (2009) Application of natural antimicrobials for food preservation. J Agr Food Chem 57:5987–6000

    Article  Google Scholar 

  122. Asokan S (2008) Oil pulling therapy. Indian J Dent Res 19:169

    Article  PubMed  Google Scholar 

  123. Amith HV, Ankola AV, Nagesh L (2007) Effect of oil pulling on plaque and gingivitis. J Oral Health Community Dent 1:12–18

    Google Scholar 

  124. Sofi F (2009) The Mediterranean diet revisited: evidence of its effectiveness grows. Curr Opin Cardiol 24:442–446

    Article  PubMed  Google Scholar 

  125. Lopez-Miranda J, Perez-Jimenez F, Ros E, De Caterina R, Badimon L, Covas MI, Escrich E, Ordovas JM, Soriguer F, Abia R et al (2010) Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaen and Cordoba (Spain) 2008. Nutr Metab Cardiovas 20:284–294

    Article  Google Scholar 

  126. Bermudez B, Lopez S, Ortega A, Varela LM, Pacheco YM, Abia R, Muriana FJG (2011) Oleic acid in olive oil: from a metabolic framework toward a clinical perspective. Curr Pharm Design 17:831–843

    Article  Google Scholar 

  127. Ruiz-Canela M, Martinez-Gonzalez MA (2011) Olive oil in the primary prevention of cardiovascular disease. Maturitas 68:245–250

    Article  PubMed  Google Scholar 

  128. Yaegaki K, Sanada K (1992) Effects of a two-phase oil–water mouthwash on halitosis. Clin Prev Dent 14:5–9

    PubMed  Google Scholar 

  129. Prasad K (2009) Flaxseed and cardiovascular health. J Cardiovasc Pharmacol 54:369–377

    Article  PubMed  Google Scholar 

  130. Schlag S, Fuchs S, Nerz C, Gaupp R, Engelmann S, Liebeke M, Lalk M, Hecker M, Gotz F (2008) Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus. J Bacteriol 190:7847–7858

    Article  PubMed  Google Scholar 

  131. Suzuki K, Tsubaki S, Fujita M, Koyama N, Takahashi M, Takazawa K (2010) Effects of safflower seed extract on arterial stiffness. Vasc Health Risk Manag 6:1007–1014

    Article  PubMed  Google Scholar 

  132. Higa R, White V, Martinez N, Kurtz M, Capobianco E, Jawerbaum A (2010) Safflower and olive oil dietary treatments rescue aberrant embryonic arachidonic acid and nitric oxide metabolism and prevent diabetic embryopathy in rats. Mol Hum Reprod 16:286–295

    Article  PubMed  Google Scholar 

  133. Hardy G, Puzovic M (2009) Formulation, stability, and administration of parenteral nutrition with new lipid emulsions. Nutr Clin Pract 24:616–625

    Article  PubMed  Google Scholar 

  134. Garnacho-Montero J, Ortiz-Leyba C, Jimenez-Jimenez FJ, Garcia-Garmendia JL, Jimenez-Jimenez LM, Garnacho-Montero MC, Barrero-Almodovar A (2002) Clinical and metabolic effects of two lipid emulsions on the parenteral nutrition of septic patients. Nutrition 18:134–138

    Article  PubMed  Google Scholar 

  135. Anand TD, Pothiraj C, Gopinath RM, Kayalvizhi B (2008) Effect of oil-pulling on dental caries causing bacteria. Afr J Microbiol Res 2:63–66

    Google Scholar 

  136. Asokan S, Kumar RS, Emmadi P, Raghuraman R, Sivakumar N (2011) Effect of oil pulling on halitosis and microorganisms causing halitosis: a randomized controlled pilot trial. J Indian Soc Pedod Prev Dent 29:90–94

    Article  PubMed  Google Scholar 

  137. Singh A, Purohit B (2011) Tooth brushing, oil pulling and tissue regeneration: a review of holistic approaches to oral health. J Ayurveda Integr Med 2:64–68

    Article  PubMed  Google Scholar 

  138. Kelly HM, Deasy PB, Busquet M, Torrance AA (2004) Bioadhesive, rheological, lubricant and other aspects of an oral gel formulation intended for the treatment of xerostomia. Int J Pharm 278:391–406

    Article  PubMed  Google Scholar 

  139. Kabara JJ (1986) Dietary lipids as anticariogenic agents. J Environ Pathol Tox 6:87–113

    Google Scholar 

  140. Das SK, Adhikary PK, Bhattacharyya DK (1976) Effects of dietary fats on fatty-acid composition of enamel and dentinal lipids of rabbit molars. J Dent Res 55:1061–1066

    Article  PubMed  Google Scholar 

  141. Stenz L, Francois P, Fischer A, Huyghe A, Tangomo M, Hernandez D, Cassat J, Linder P, Schrenzel J (2008) Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol Lett 287:149–155

    Article  PubMed  Google Scholar 

  142. Busscher HJ, Perdok JF, Van Der M (1992) Bacterial growth inhibition and short-term clinical efficacy of a vegetable oil-based mouthrinse: preliminary study. Clin Prev Dent 14:5–8

    PubMed  Google Scholar 

  143. Pretty IA, Gallagher MJ, Martin MV, Edgar WM, Higham SM (2003) A study to assess the effects of a new detergent-free, olive oil formulation dentifrice in vitro and in vivo. J Dent 31:327–332

    Article  PubMed  Google Scholar 

  144. Green RM, Hartles RL (1966) The effects of groundnut oil and vitamins on dental caries in the albino rat. Arch Oral Biol 11:913–919

    Article  PubMed  Google Scholar 

  145. Aguiar AA, Saliba NA (2004) Toothbrushing with vegetable oil: a clinical and laboratorial analysis. Braz Oral Res 18:168–173

    Article  PubMed  Google Scholar 

  146. Featherstone JD, Rosenberg H (1984) Lipid effect on the progress of artificial carious lesions in dental enamel. Caries Res 18:52–55

    Article  PubMed  Google Scholar 

  147. Wiegand A, Gutsche M, Attin T (2007) Effect of olive oil and an olive oil-containing fluoridated mouthrinse on enamel and dentin erosion in vitro. Acta Odontol Scand 65:357–361

    Article  PubMed  Google Scholar 

  148. Buchalla W, Attin T, Roth P, Hellwig E (2003) Influence of olive oil emulsions on dentin demineralization in vitro. Caries Res 37:100–107

    Article  PubMed  Google Scholar 

  149. Wejnerowska G, Gackowska A, Gaca J (2008) Determination of linoleic acid in toothpaste by gas chromatography with flame ionization detection. Anal Sci 24:759–762

    Article  PubMed  Google Scholar 

  150. Campan P, Planchand PO, Duran D (1997) Pilot study on n-3 polyunsaturated fatty acids in the treatment of human experimental gingivitis. J Clin Periodontol 24:907–913

    Article  PubMed  Google Scholar 

  151. Eberhard J, Heilmann F, Acil Y, Albers HK, Jepsen S (2002) Local application of n-3 or n-6 polyunsaturated fatty acids in the treatment of human experimental gingivitis. J Clin Periodontol 29:364–369

    Article  PubMed  Google Scholar 

  152. Rosenstein ED, Kushner LJ, Kramer N, Kazandjian G (2003) Pilot study of dietary fatty acid supplementation in the treatment of adult periodontitis. Prostag Leukotr Ess 68:213–218

    Article  Google Scholar 

  153. Cortelli SC, Cortelli JR, Wu MM, Simmons K, Charles CA (2012) Comparative antiplaque and antigingivitis efficacy of a multipurpose essential oil-containing mouthrinse and a cetylpyridinium chloride-containing mouthrinse: a 6-month randomized clinical trial. Quintessence Int 43:e82–e94

    PubMed  Google Scholar 

  154. Epand RM, Epand RF (2011) Bacterial membrane lipids in the action of antimicrobial agents. J Pept Sci 7(5):298–305

    Article  Google Scholar 

  155. Maciejewski B, Zajusz A, Pilecki B, Swiatnicka J, Skladowski K, Dorr W, Kummermehr J, Trott KR (1991) Acute mucositis in the stimulated oral mucosa of patients during radiotherapy for head and neck cancer. Radiother Oncol 22:7–11

    Article  PubMed  Google Scholar 

  156. Rezvani M, Ross GA (2004) Modification of radiation-induced acute oral mucositis in the rat. Int J Radiat Biol 80:177–182

    Article  PubMed  Google Scholar 

  157. Johansson I, Lif Holgerson P (2011) Milk and oral health. Nestle Nutr Workshop Ser Pediatr Program 67:55–66

    Article  PubMed  Google Scholar 

  158. Lottspeich F, Engels JW (2006) Bioanalytik, 2nd edn. Elsevier, Heidelberg

    Google Scholar 

  159. Berg JM, Tymoczko JL, Stryer L, Clarke ND (2002) Biochemistry, 5th edn. Freeman, New York

    Google Scholar 

  160. Prabhu S, Shenoi SD, Pandey S, Pai KM (2011) Improvement of oral care in emergency setup including acute skin failure patients. Indian J Dermatol Venereol Leprol 77:104–106

    Article  PubMed  Google Scholar 

  161. Russell MW, Challacombe SJ, Lehner T (1980) Specificity of antibodies induced by Streptococcus mutans during immunization against dental caries. Immunology 40:97–106

    PubMed  Google Scholar 

  162. Eder K, Reichlmayrlais AM, Kirchgessner M (1991) Gas chromatographic analysis of fatty acid methyl esters: avoiding discrimination by programmed temperature vaporizing injection. J Chromatogr 588:265–272

    Article  Google Scholar 

  163. Gutnikov G (1995) Fatty acid profiles of lipid samples. J Chromatogr B 671:71–89

    Article  Google Scholar 

  164. Hillenkamp F, Peter-Katalinic J (2007) MALDI MS: a practical guide to instrumentation, methods and applications. Wiley, Weinheim

    Google Scholar 

  165. Fuchs B, Schiller J (2008) MALDI-TOF MS analysis of lipids from cells, tissues and body fluids. Subcell Biochem 49:541–565

    Article  PubMed  Google Scholar 

  166. Jie MSFLK, Mustafa J (1997) High-resolution nuclear magnetic resonance spectroscopy—applications to fatty acids and triacylglycerols. Lipids 32:1019–1034

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank W. Hoth-Hannig for the excellent electron microscopic imaging and the German Research Foundation (DFG) for the support of the research project on “Lipids in the acquired pellicle”. (HA 5192/2–1; KU 1271/6–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kensche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kensche, A., Reich, M., Kümmerer, K. et al. Lipids in preventive dentistry. Clin Oral Invest 17, 669–685 (2013). https://doi.org/10.1007/s00784-012-0835-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-012-0835-9

Keywords

Navigation