Clinical Oral Investigations

, Volume 17, Issue 2, pp 379–388 | Cite as

Clinical and microbiological effects of ozone nano-bubble water irrigation as an adjunct to mechanical subgingival debridement in periodontitis patients in a randomized controlled trial

  • Sae Hayakumo
  • Shinichi Arakawa
  • Yoshihiro Mano
  • Yuichi Izumi
Original Article

Abstract

Aim

Ozone nano-bubble water (NBW3) seems to be suitable as an adjunct to periodontal treatment owing to its potent antimicrobial effects, high level of safety, and long storage stability. The aim of the present study was to evaluate the clinical and microbiological effects of NBW3 irrigation as an adjunct to subgingival debridement for periodontal treatment.

Methods

Twenty-two subjects were randomly assigned to one of the two treatment groups: full-mouth mechanical debridement with tap water (WATER) or full-mouth mechanical debridement with NBW3 (NBW3). Clinical examination was performed at baseline and 4 and 8 weeks after treatment. Microbiological examination was carried out just before and after treatment and at 1 and 8 weeks posttreatment.

Results

There were significant improvements in all clinical parameters after 4 weeks in both groups. The reduction in the probing pocket depth and the clinical attachment gain after 4 and 8 weeks in the NBW3 group were significantly greater than those in the WATER group. Moreover, only the NBW3 group showed statistically significant reductions in the mean total number of bacteria in subgingival plaque over the study period.

Conclusions

The present study suggests that subgingival irrigation with NBW3 may be a valuable adjunct to periodontal treatment.

Clinical relevance

This study verified the potential of new antimicrobial agent, MNW3, as an adjunct to periodontal treatment.

Keywords

Adjunctive antimicrobial agents Irrigation Ozone nano-bubble water Periodontitis Subgingival debridement 

References

  1. 1.
    Dzink JL, Socransky SS, Haffajee AD (1988) The predominant cultivable microbiota of active and inactive lesions of destructive periodontal diseases. J Clin Periodontol 15:316–323PubMedCrossRefGoogle Scholar
  2. 2.
    Ali RW, Velcescu C, Jivanescu MC, Lofthus B, Skaug N (1996) Prevalence of 6 putative periodontal pathogens in subgingival plaque samples from Romanian adult periodontitis patients. J ClinPeriodontol 23:133–139CrossRefGoogle Scholar
  3. 3.
    Ashimoto A, Chen C, Bakker I, Slots J (1996) Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions. Oral Microbiol Immunol 11:266–273PubMedCrossRefGoogle Scholar
  4. 4.
    Haffajee AD, Socransky SS, Patel MR, Song X (2008) Microbial complexes in supragingival plaque. Oral Microbiol Immunol 23:196–205PubMedCrossRefGoogle Scholar
  5. 5.
    Petersilka GJ, Ehmke B, Flemmig TF (2002) Antimicrobial effects of mechanical debridement. Periodontol 2000 28:56–71PubMedCrossRefGoogle Scholar
  6. 6.
    Drisko CH (1996) Non-surgical pocket therapy: pharmacotherapeutics. Ann Periodontol 1:491–566PubMedCrossRefGoogle Scholar
  7. 7.
    Greenstein G, Tonetti M (2000) The role of controlled drug delivery for periodontitis. The Research, Science and Therapy Committee of the American Academy of Periodontology. J Periodontol 71:125–140PubMedCrossRefGoogle Scholar
  8. 8.
    Rams TE, Slots J (1996) Local delivery of antimicrobial agents in the periodontal pocket. Periodontol 2000 10:139–159PubMedCrossRefGoogle Scholar
  9. 9.
    Krautheim AB, Jermann TH, Bircher AJ (2004) Chlorhexidine anaphylaxis: case report and review of the literature. Contact Dermatitis 50:113–116PubMedCrossRefGoogle Scholar
  10. 10.
    Fleischer W, Reimer K (1997) Povidone-iodine in antisepsis—state of the art. Dermatology 195(Suppl 2):3–9PubMedCrossRefGoogle Scholar
  11. 11.
    NobukuniK HN, Namba R et al (1997) The influence of long-term treatment with povidone-iodine on thyroid function. Dermatology 195(Suppl 2):69–72CrossRefGoogle Scholar
  12. 12.
    Linder N, Davidovitch N, Reichman B et al (1997) Topical iodine-containing antiseptics and subclinical hypothyroidism in preterm infants. J Pediatr 131:434–439PubMedCrossRefGoogle Scholar
  13. 13.
    Kim JG, Yousef AE, Dave S (1999) Application of ozone for enhancing the microbiological safety and quality of foods: a review. J Food Prot 62:1071–1087PubMedGoogle Scholar
  14. 14.
    Restaino L, Frampton EW, Hemphill JB, Palnikar P (1995) Efficacy of ozonated water against various food-related microorganisms. Appl Environ Microbiol 61:3471–3475PubMedGoogle Scholar
  15. 15.
    Unal R, Kim JG, Yousef AE (2001) Inactivation of Escherichia coli O157:H7, Listeria monocytogenes, and Lactobacillus leichmannii by combinations of ozone and pulsed electric field. J Food Prot 64:777–782PubMedGoogle Scholar
  16. 16.
    Paraskeva P, Graham NJ (2002) Ozonation of municipal wastewater effluents. Water Environ Res 74:569–581PubMedCrossRefGoogle Scholar
  17. 17.
    Baysan A, Whiley RA, Lynch E (2000) Antimicrobial effect of a novel ozone-generating device on micro-organisms associated with primary root carious lesions in vitro. Caries Res 34:498–501PubMedCrossRefGoogle Scholar
  18. 18.
    Baysan A, Lynch E (2004) Effect of ozone on the oral microbiota and clinical severity of primary root caries. Am J Dent 17:56–60PubMedGoogle Scholar
  19. 19.
    Nagayoshi M, Kitamura C, Fukuizumi T, Nishihara T, Terashita M (2004) Antimicrobial effect of ozonated water on bacteria invading dentinal tubules. J Endod 30:778–81PubMedCrossRefGoogle Scholar
  20. 20.
    Arita M, Nagayoshi M, Fukuizumi T, Okinaga T, Masumi S, Morikawa M et al (2005) Microbicidal efficacy of ozonated water against Candida albicans adhering to acrylic denture plates. Oral Microbiol Immunol 20:206–210PubMedCrossRefGoogle Scholar
  21. 21.
    Hems RS, Gulabivala K, Ng YL, Ready D, Spratt DA (2005) An in vitro evaluation of the ability of ozone to kill a strain of Enterococcus faecalis. Int Endod J 38:22–29PubMedCrossRefGoogle Scholar
  22. 22.
    Huth KC, Quirling M, Maier S, Kamereck K, Alkhayer M, Paschos E et al (2009) Effectiveness of ozone against endodontopathogenic microorganisms in a root canal biofilm model. Int Endod J 42:3–13PubMedCrossRefGoogle Scholar
  23. 23.
    Bezrukova IV, Petrukhina NB, Voinov PA (2005) Experience in medical ozone use for root canal treatment. Stomatologiia (Mosk) 84:20–22Google Scholar
  24. 24.
    Huth KC, Quirling M, Lenzke S, Paschos E, Kamereck K, Brand K et al (2011) Effectiveness of ozone against periodontal pathogenic microorganisms. Eur J Oral Sci 119:204–210PubMedCrossRefGoogle Scholar
  25. 25.
    Huth KC, Jakob FM, Saugel B, Cappello C, Paschos E, Hollweck R et al (2006) Effect of ozone on oral cells compared with established antimicrobials. Eur J Oral Sci 114:435–440PubMedCrossRefGoogle Scholar
  26. 26.
    Filippi A (2001) The effects of ozonized water on epithelial wound healing (in German). Deutsche Zahnärztliche Zeitschrift 56:104–108Google Scholar
  27. 27.
    Ebensberger U, Pohl Y, Filippi A (2002) PCNA-expression of cementoblasts and fibroblasts on the root surface after extraoral rinsing for decontamination. Dent Traumatol 18:262–266PubMedCrossRefGoogle Scholar
  28. 28.
    Nagayoshi M, Fukuizumi T, Kitamura C, Yano J, Terashita M, Nishihara T (2004) Efficacy of ozone on survival and permeability of oral microorganisms. Oral Microbiol Immunol 19:240–246PubMedCrossRefGoogle Scholar
  29. 29.
    Brauner A (1991) Clinical studies of therapeutic results from ozonized water for gingivitis and periodontitis. Zahnarztl Prax 42:48–50PubMedGoogle Scholar
  30. 30.
    Kshitish D, Laxman VK (2010) The use of ozonated water and 0.2 % chlorhexidine in the treatment of periodontitis patients: a clinical and microbiologic study. Indian J Dent Res 21:341–348PubMedCrossRefGoogle Scholar
  31. 31.
    Chiba K, Sugai T. Functional water production method. JP, 2010-167365, A. 2010-08-05Google Scholar
  32. 32.
    Grebenshchikov SY, Qu ZW, Zhu H, Schinke R (2007) New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands. Phys Chem Chem Phys 9:2044–2064PubMedCrossRefGoogle Scholar
  33. 33.
    Broadwater WT, Hoehn RC, King PH (1973) Sensitivity of three selected bacterial species to ozone. Appl Microbiol 26:391–393PubMedGoogle Scholar
  34. 34.
    Staehelin J, Hoigne J (1985) Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ Sci Technol 19:1206–1213PubMedCrossRefGoogle Scholar
  35. 35.
    Haffajee AD, Socransky SS (1994) Microbial etiological agents of destructive periodontal diseases. Periodontol 2000 5:78–111PubMedCrossRefGoogle Scholar
  36. 36.
    Slots J, Feik D, Rams TE (1990) Prevalence and antimicrobial susceptibility of Enterobacteriaceae, Pseudomonadaceae and Acinetobacter in human periodontitis. Oral Microbiol Immunol 5:149–154PubMedCrossRefGoogle Scholar
  37. 37.
    Wilson M (1996) Susceptibility of oral bacterial biofilms to antimicrobial agents. J Med Microbiol 44:79–87PubMedCrossRefGoogle Scholar
  38. 38.
    Shechter H (1973) Spectrophotometric method of determination of ozone in aqueous solutions. Water Res 7:729–739CrossRefGoogle Scholar
  39. 39.
    Kuboniwa M, Lamont RJ (2010) Subgingival biofilm formation. Periodontol 2000 52:38–52PubMedCrossRefGoogle Scholar
  40. 40.
    Eick S, Tigan M, Sculean A (2012) Effect of ozone on periodontopathogenic species—an in vitro study. Clin Oral Investig. doi:10.1007/s00784-011-0515-1
  41. 41.
    Maeda H, Fujimoto C, Haruki Y et al (2003) Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillusactinomycetemcomitans, Porphyromonasgingivalis, Prevotellaintermedia, tetQ gene and total bacteria. FEMS Immunol Med Microbiol 39:81–86PubMedCrossRefGoogle Scholar
  42. 42.
    Yoshida A, Suzuki N, Nakano Y, Kawada M, Oho T, Koga T (2003) Development of a 5′ nuclease-based real-time PCR assay for quantitative detection of cariogenic dental pathogens Streptococcus mutans and Streptococcus sobrinus. J Clin Microbiol 41:4438–4441PubMedCrossRefGoogle Scholar
  43. 43.
    Haffajee AD, Cugini MA, Dibar S, Smith C, Kent RL, Socransky SS (1997) The effect of SRP on the clinical and microbiological parameters of periodontal diseases. J Clin Periodontol 24:324–334PubMedCrossRefGoogle Scholar
  44. 44.
    Ali RW, Lie T, Skaug N (1992) Early effects of periodontal therapy on the detection frequency of four putative periodontal pathogens in adults. J Periodontol 63:540–547PubMedCrossRefGoogle Scholar
  45. 45.
    Shiloah J, Patters MR (1994) DNA probe analyses of the survival of selected periodontal pathogens following scaling, root planing, and intra-pocket irrigation. J Periodontol 65:568–575PubMedCrossRefGoogle Scholar
  46. 46.
    Boutaga K, van Winkelhoff AJ, Vandenbroucke-Grauls CM, Savelkoul PH (2003) Comparison of real-time PCR and culture for detection of Porphyromonas gingivalis in subgingival plaque samples. J Clin Microbiol 41:4950–4954PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sae Hayakumo
    • 1
  • Shinichi Arakawa
    • 1
  • Yoshihiro Mano
    • 2
  • Yuichi Izumi
    • 1
    • 3
  1. 1.Section of Periodontology, Department of Hard Tissue Engineering, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityBunkyo-kuJapan
  2. 2.Hyperbaric Medical Center, Hospital of MedicineTokyo Medical and Dental UniversityTokyoJapan
  3. 3.Global Center of Excellence (GCOE) ProgramTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations