Skip to main content

Advertisement

Log in

Different CAD/CAM-processing routes for zirconia restorations: influence on fitting accuracy

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

The aim of the present in vitro study was to evaluate the influence of different processing routes on the fitting accuracy of four-unit zirconia fixed dental prostheses (FDPs) fabricated by computer-aided design/computer-aided manufacturing (CAD/CAM). Three groups of zirconia frameworks with ten specimens each were fabricated. Frameworks of one group (CerconCAM) were produced by means of a laboratory CAM-only system. The other frameworks were made with different CAD/CAM systems; on the one hand by in-laboratory production (CerconCAD/CAM) and on the other hand by centralized production in a milling center (Compartis) after forwarding geometrical data. Frameworks were then veneered with the recommended ceramics, and marginal accuracy was determined using a replica technique. Horizontal marginal discrepancy, vertical marginal discrepancy, absolute marginal discrepancy, and marginal gap were evaluated. Statistical analyses were performed by one-way analysis of variance (ANOVA), with the level of significance chosen at 0.05. Mean horizontal discrepancies ranged between 22 μm (CerconCAM) and 58 μm (Compartis), vertical discrepancies ranged between 63 μm (CerconCAD/CAM) and 162 μm (CerconCAM), and absolute marginal discrepancies ranged between 94 μm (CerconCAD/CAM) and 181 μm (CerconCAM). The marginal gap varied between 72 μm (CerconCAD/CAM) and 112 μm (CerconCAM, Compartis). Statistical analysis revealed that, with all measurements, the marginal accuracy of the zirconia FDPs was significantly influenced by the processing route used (p < 0.05). Within the limitations of this study, all restorations showed a clinically acceptable marginal accuracy; however, the results suggest that the CAD/CAM systems are more precise than the CAM-only system for the manufacture of four-unit FDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hannink RHJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83:461–487

    Article  Google Scholar 

  2. Kohorst P, Dittmer MP, Borchers L, Stiesch-Scholz M (2008) Influence of cyclic fatigue in water on the load-bearing capacity of dental bridges made of zirconia. Acta Biomater 4:1440–1447

    Article  PubMed  Google Scholar 

  3. Kohorst P, Herzog TJ, Borchers L, Stiesch-Scholz M (2007) Load-bearing capacity of all-ceramic posterior four-unit fixed partial dentures with different zirconia frameworks. Eur J Oral Sci 115:161–166

    Article  PubMed  Google Scholar 

  4. Tinschert J, Natt G, Hassenpflug S, Spiekermann H (2004) Status of current CAD/CAM technology in dental medicine. Int J Comput Dent 7:25–45

    PubMed  Google Scholar 

  5. Raigrodski AJ (2004) Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. J Prosthet Dent 92:557–562

    Article  PubMed  Google Scholar 

  6. Denry I, Kelly JR (2008) State of the art of zirconia dental applications. Dent Mater 24:299–307

    Article  PubMed  Google Scholar 

  7. Rosentritt M, Behr M, Thaller C, Rudolph H, Feilzer A (2009) Fracture performance of computer-aided manufactured zirconia and alloy crowns. Quintessence Int 40:655–662

    PubMed  Google Scholar 

  8. Comlekoglu M, Dundar M, Ozcan M, Gungor MA, Gokce B, Artunc C (2009) Influence of cervical finish line type on the marginal adaptation of zirconia ceramic crowns. Oper Dent 34:586–592

    Article  PubMed  Google Scholar 

  9. Castillo de Oyagüe R, Sánchez-Jorge MI, Sánchez Turrión A, Monticelli F, Toledano M, Osorio R (2009) Influence of CAM vs. CAD/CAM scanning methods and finish line of tooth preparation in the vertical misfit of zirconia bridge structures. Am J Dent 22:79–83

    PubMed  Google Scholar 

  10. Sailer I, Feher A, Filser F, Gauckler L, Lüthy H, Hämmerle CH (2007) Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 20:383–388

    PubMed  Google Scholar 

  11. Lang NP, Kiel RA, Anderhalden K (1983) Clinical and microbiological effects of subgingival restorations with overhanging or clinically perfect margins. J Clin Periodontol 10:563–578

    Article  PubMed  Google Scholar 

  12. Koernschild KL, Campbell SD (2000) Periodontal tissue responses after insertion of artificial crowns and fixed partial dentures. J Prosthet Dent 84:492–498

    Article  Google Scholar 

  13. Felton DA, Kanoy BE, Bayne SC, Wirthman GP (1991) Effect of in vivo crown margin discrepancies on periodontal health. J Prosthet Dent 65:357–364

    Article  PubMed  Google Scholar 

  14. Goldman M, Laosonthorn P, White RR (1992) Microleakage—full crowns and the dental pulp. J Endod 18:473–475

    Article  PubMed  Google Scholar 

  15. Rekow D, Thompson VP (2005) Near-surface damage—a persistent problem in crowns obtained by computer-aided design and manufacturing. Proc Inst Mech Eng 219:233–243

    Article  Google Scholar 

  16. Molin MK, Karlsson SL (2008) Five-year clinical prospective evaluation of zirconia-based Denzir 3-unit FPDs. Int J Prosthodont 21:223–227

    PubMed  Google Scholar 

  17. Tinschert J, Schulze KA, Natt G, Latzke P, Heussen N, Spiekermann H (2008) Clinical behavior of zirconia-based fixed partial dentures made of DC-Zirkon: 3-year results. Int J Prosthodont 21:217–222

    PubMed  Google Scholar 

  18. Vult von Steyern P, Carlson P, Nilner K (2005) All-ceramic fixed partial dentures designed according to the DC-Zirkon technique. A 2-year clinical study. J Oral Rehabil 32:180–187

    Article  PubMed  Google Scholar 

  19. Reich S, Kappe K, Teschner H, Schmitt J (2008) Clinical fit of four-unit zirconia posterior fixed dental prostheses. Eur J Oral Sci 116:579–584

    Article  PubMed  Google Scholar 

  20. Beuer F, Aggstaller H, Edelhoff D, Gernet W, Sorensen J (2009) Marginal and internal fits of fixed dental prostheses zirconia retainers. Dent Mater 25:94–102

    Article  PubMed  Google Scholar 

  21. Beuer F, Naumann M, Gernet W, Sorensen JA (2008) Precision of fit: zirconia three-unit fixed dental prostheses. Clin Oral Investig 13:343–349

    Article  PubMed  Google Scholar 

  22. Tinschert J, Natt G, Mautsch W, Spiekermann H, Anusavice KJ (2001) Marginal fit of alumina- and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 26:367–374

    PubMed  Google Scholar 

  23. Reich S, Wichmann M, Nkenke E, Proeschel P (2005) Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci 113:174–179

    Article  PubMed  Google Scholar 

  24. Wettstein F, Sailer I, Roos M, Hämmerle CHF (2008) Clinical study of the internal gaps of zirconia and metal frameworks for fixed partial dentures. Eur J Oral Sci 116:272–279

    Article  PubMed  Google Scholar 

  25. Bindl A, Mörmann WH (2007) Fit of all-ceramic posterior fixed partial denture frameworks in vitro. Int J Periodontics Restorative Dent 27:567–575

    PubMed  Google Scholar 

  26. Gonzalo E, Suárez MJ, Serrano B, Lozano JF (2008) Marginal fit of zirconia posterior fixed partial dentures. Int J Prosthodont 21:398–399

    PubMed  Google Scholar 

  27. Coli P, Karlsson S (2004) Precision of a CAD/CAM technique for the production of zirconium dioxide copings. Int J Prosthodont 17:577–580

    PubMed  Google Scholar 

  28. Kohorst P, Brinkmann H, Li J, Borchers L, Stiesch M (2009) Marginal accuracy of four-unit zirconia fixed dental prostheses fabricated using different computer-aided design/computer-aided manufacturing systems. Eur J Oral Sci 117:319–325

    Article  PubMed  Google Scholar 

  29. Vigolo P, Fonzi F (2008) An in vitro evaluation of fit of zirconium-oxide-based ceramic four-unit fixed partial dentures, generated with three different CAD/CAM systems, before and after porcelain firing cycles and after glaze cycles. J Prosthodont 17:621–626

    Article  PubMed  Google Scholar 

  30. Att W, Komine F, Gerds T, Strub JR (2009) Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J Prosthet Dent 101:239–247

    Article  PubMed  Google Scholar 

  31. Holmes JR, Bayne SC, Holland GA, Sulik WD (1989) Considerations in measurement of marginal fit. J Prosthet Dent 62:405–408

    Article  PubMed  Google Scholar 

  32. Kunii J, Hotta Y, Tamaki Y, Ozawa A, Kobayashi Y, Fujishima A, Miyazaki T, Fujiwara T (2007) Effect of sintering on the marginal and internal fit of CAD/CAM-fabricated zirconia frameworks. Dent Mater J 26:820–826

    Article  PubMed  Google Scholar 

  33. Persson ASK, Odén A, Andersson M, Sandborgh-Englund G (2009) Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness. Dent Mater 25:929–936

    Article  PubMed  Google Scholar 

  34. Witkowski S, Komine F, Gerds T (2006) Marginal accuracy of titanium copings fabricated by casting and CAD/CAM techniques. J Prosthet Dent 96:47–52

    Article  PubMed  Google Scholar 

  35. Komine F, Gerds T, Witkowski S, Strub JR (2005) Influence of framework configuration on the marginal adaption of zirconium dioxide ceramic anterior four-unit frameworks. Acta Odontol Scand 63:361–366

    Article  PubMed  Google Scholar 

  36. Dittmer MP, Borchers L, Stiesch M, Kohorst P (2009) Stresses and distortions within fixed dental prostheses due to the veneering process. Acta Biomater 5:3231–3239

    Article  PubMed  Google Scholar 

  37. Boening KW, Wolf BH, Schmidt AE, Kastner K, Walter MH (2000) Clinical fit of Procera AllCeram crowns. J Prosthet Dent 84:419–424

    Article  PubMed  Google Scholar 

  38. Coli P, Karlsson S (2004) Fit of a new pressure-sintered zirconium dioxide coping. Int J Prosthodont 17:59–64

    PubMed  Google Scholar 

  39. Bornemann G, Lemelson S, Luthardt RG (2002) Innovative method for the analysis of the internal 3D fitting accuracy of Cerec-3 crowns. Int J Comput Dent 5:177–182

    PubMed  Google Scholar 

  40. Luthardt RG, Bornemann G, Lemelson S, Walter MH, Hüls A (2004) An innovative method for evaluation of the 3-D internal fit of CAD/CAM crowns fabricated after direct optical versus indirect laser scan digitizing. Int J Prosthodont 17:680–685

    PubMed  Google Scholar 

  41. Harris IR, Wickens JL (1994) A comparison of the fit of spark-eroded titanium copings and cast gold alloy copings. Int J Prosthodont 7:348–355

    PubMed  Google Scholar 

  42. Laurent M, Scheer P, Dejou J, Laborde G (2008) Clinical evaluation of the marginal fit of cast crowns—validation of the silicone replica method. J Oral Rehabil 35:116–122

    Article  PubMed  Google Scholar 

  43. Rahme HY, Tehini GE, Adib SM, Ardo AS, Rifai KT (2008) In vitro evaluation of the “replica technique” in the measurement of the fit of Procera crowns. J Contemp Dent Pract 9:25–32

    PubMed  Google Scholar 

  44. Groten M, Axmann D, Pröbster L, Weber H (2000) Determination of the minimum number of marginal gap measurements required for practical in vitro testing. J Prosthet Dent 83:40–49

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by DeguDent GmbH, which is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Kohorst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohorst, P., Junghanns, J., Dittmer, M.P. et al. Different CAD/CAM-processing routes for zirconia restorations: influence on fitting accuracy. Clin Oral Invest 15, 527–536 (2011). https://doi.org/10.1007/s00784-010-0415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-010-0415-9

Keywords

Navigation