Skip to main content

Advertisement

Log in

Suitability of a malachite green procedure to detect minimal amounts of phosphate dissolved in acidic solutions

  • Short Communication
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

The study describes the suitability of a colorimetric method (malachite green procedure) for detection of minimal amounts of phosphate (7.3–29.1 μmol/L) in different acidic solutions (hydrochloric acid, oxalic acid, maleic acid, perchloric acid, tartaric acid, citric acid, lactic acid and acetic acid) adjusted to pH 2.0. A mixture of the respective phosphate concentrations with distilled water served as control. The experiments were run with ten repeats in series. Assessment of intra- and interassay coefficient of variation and lower limit of quantification revealed that depending on the acid used, the applied method is a reliable and suitable tool to detect and quantify minimal phosphate contents in small samples of acidic solutions that have the potential to cause erosive dental lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Attin T, Becker K, Hannig C, Buchalla W, Hilgers R (2005) A method to detect minimal amounts of calcium in acidic solutions. Caries Res (in press)

  2. Attin T, Siegel S, Buchalla W, Lennon AM, Hannig C, Becker K (2004) Brushing abrasion of softened and remineralised dentin: an in situ study. Caries Res 38:62–66

    Article  CAS  PubMed  Google Scholar 

  3. Attin T, Weiss K, Becker K, Buchalla W, Wiegand A (2005) Impact of modified acidic soft drinks on enamel erosion. Oral Dis 11:7–12

    Article  CAS  PubMed  Google Scholar 

  4. Bartlett DW, Blunt L, Smith BG (1997) Measurement of tooth wear in patients with palatal erosion. Br Dent J 182:179–184

    CAS  PubMed  Google Scholar 

  5. Baykov AA, Evtushenko OA, Avaeva SM (1988) A malachite green procedure for ortho-phosphate determination and its use in alkaline phosphatase-based enzyme-immunoassay. Anal Biochem 171:266–270

    Article  CAS  PubMed  Google Scholar 

  6. Curzon MEJ, Hefferren JJ (2001) Modern methods for assessing the cariogenic and erosive potential of foods. Br Dent J 191:41–46

    Article  CAS  PubMed  Google Scholar 

  7. Eurachem (2002) Guide to quality in analytical chemistry: an aid to accreditation. http://www.eurachem.ul.pt/index.htm

    Google Scholar 

  8. Fathi AR, Krautheim A, Lucke S, Becker K, Steinfelder HJ (2002) Nonradioactive technique to measure protein phosphatase 2A-like activity and its inhibition by drugs in cell extracts. Anal Biochem 310:208–214

    Article  CAS  PubMed  Google Scholar 

  9. Ganss C, Klimek J, Schwarz N (2000) A comparative profilometric in vitro study of the susceptibility of polished and natural human enamel and dentine surfaces to erosive demineralization. Arch Oral Biol 45:897–902

    Article  CAS  PubMed  Google Scholar 

  10. Geladopoulos TP, Sotiroudis TG, Evangelopoulos AE (1991) A malachite green colorimetric assay for protein phosphatase activity. Anal Biochem 192:112–116

    Article  CAS  PubMed  Google Scholar 

  11. Habelitz S, Marshall SJ, Marshall GW Jr, Balooch M (2001) Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 46:173–183

    Article  CAS  PubMed  Google Scholar 

  12. Hattab F, Linden LA (1984) Micro-determination of phosphate in enamel biopsy samples using the malachite green method. Acta Odontol Scand 42:85–91

    CAS  PubMed  Google Scholar 

  13. Hohenwallner W, Wimmer E (1973) Malachite green micromethod for determination of inorganic-phosphate. Clin Chim Acta 45:169–175

    Google Scholar 

  14. Hooper S, West NX, Pickles MJ, Joiner A, Newcombe RG, Addy M (2003) Investigation of erosion and abrasion on enamel and dentine: a model in situ using toothpastes of different abrasivity. J Clin Periodontol 30:802–808

    Article  CAS  PubMed  Google Scholar 

  15. Hughes JA, Jandt KD, Baker N, Parker D, Newcombe RG, Eisenburger M, Addy M (2002) Further modification to soft drinks to minimise erosion. A study in situ. Caries Res 36:70–74

    Article  CAS  PubMed  Google Scholar 

  16. Hughes JA, West NX, Parker DM, van den Braak MH, Addy M (2000) Effects of pH and concentration of citric, malic and lactic acids on enamel, in vitro. J Dent 28:147–152

    Article  CAS  PubMed  Google Scholar 

  17. Jaeggi T, Lussi A (1999) Toothbrush abrasion of erosively altered enamel after intraoral exposure to saliva: an in situ study. Caries Res 33:455–461

    Article  CAS  PubMed  Google Scholar 

  18. Lippert F, Parker DM, Jandt KD (2004) In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J Colloid Interface Sci 280:442–448

    Article  CAS  PubMed  Google Scholar 

  19. Lippert F, Parker DM, Jandt KD (2004) Toothbrush abrasion of surface softened enamel studied with tapping mode AFM and AFM nanoindentation. Caries Res 38:464–472

    Article  CAS  PubMed  Google Scholar 

  20. Lussi A, Jaeggi T, Jaeggi-Scharer S (1995) Prediction of the erosive potential of some beverages. Caries Res 29:349–354

    CAS  PubMed  Google Scholar 

  21. Lussi A, Jaeggi T, Zero D (2004) The role of diet in the aetiology of dental erosion. Caries Res 38(Suppl 1):34–44

    Article  Google Scholar 

  22. Pretty IA, Edgar WM, Higham SM (2003) The erosive potential of commercially available mouth rinses on enamel as measured by quantitative light-induced fluorescence (QLF). J Dent 31:313–319

    Article  CAS  PubMed  Google Scholar 

  23. Schweizer-Hirt CM, Schait A, Schmid R, Imfeld T, Lutz F, Muhlemann HR (1978) Erosion and abrasion of the dental enamel. Experimental study. SSO Schweiz Monatsschr Zahnheilkd 88:497–529

    CAS  PubMed  Google Scholar 

  24. Shah VP, Midha KK, Dighe S, McGilveray IJ, Skelly JP, Yacobi A, Layloff T, Viswanathan CT, Cook CE, McDowall RD (1991) Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. Conference report. Eur J Drug Metab Pharmacokinet 16:249–255

    Google Scholar 

  25. Shah VP, Midha KK, Findlay JW, Hill HM, Hulse JD, McGilveray IJ, McKay G, Miller KJ, Patnaik RN, Powell ML, Tonelli A, Viswanathan CT, Yacobi A (2000) Bioanalytical method validation—a revisit with a decade of progress. Pharm Res 17:1551–1557

    Google Scholar 

  26. Ten Cate JM, Larsen MJ, Pearce EI, Fejerskov O (2003) Chemical interactions between the tooth and oral fluids. In: Fejerskov O, Kidd EAM (eds) Dental caries. The disease and its clinical management. Blackwell Munksgaard, Copenhagen, pp 49–70

    Google Scholar 

  27. Zero DT (1996) Etiology of dental erosion—extrinsic factors. Eur J Oral Sci 104:162–177

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Attin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attin, T., Becker, K., Hannig, C. et al. Suitability of a malachite green procedure to detect minimal amounts of phosphate dissolved in acidic solutions. Clin Oral Invest 9, 203–207 (2005). https://doi.org/10.1007/s00784-005-0313-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-005-0313-8

Keywords

Navigation