Skip to main content

Advertisement

Log in

Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the influence of different treatment approaches on: (1) the removal of early plaque biofilms grown on titanium implants, and (2) the biocompatibility of the instrumented implant surfaces. Five volunteers wore acrylic splints with sand-blasted and acid-etched titanium discs for 24 h to build up supragingival plaque. A total of 80 specimens were randomly assigned to the following groups: (1) an Er:YAG laser (100 mJ/pulse, 10 Hz) (Y), (2) an ultrasonic system (U), (3) plastic curettes and rinsing with chlorhexidine digluconate (P), or (4) unworn titanium discs (C). Autoclaved specimens were incubated with SAOS2 cells for three days. The following parameters were measured: treatment time (T), residual plaque biofilm (RPB) and clean implant surface (CIS) areas (%), and mitochondrial cell activity (MA) (counts/s). Statistical analysis within and between groups revealed the following mean scores (±SD): RPB areas: P (61.1±11.4) > U (36.8±4.5) > Y (5.8±5.1); CIS areas: Y (94.2±5.1) > U (63.2±4.5) > P (38.9±11.2); T: Y (5.6±1.2) > U (2.4±0.5) > P (2.3±0.5); MA: C (1.528.636±188.371) > U (831.594±370.228) > Y (678.250±367.902) > P (144.105±120.961). Within the limits of the present study, it may be concluded that Y seems to be most suitable for the removal of supragingival early plaque biofilms grown on SLA titanium implants, and (2) all treatment procedures failed to restore the biocompatibility of previously-contaminated SLA titanium surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–e
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmad M, McCarthy MB, Gronowicz G (1999) An in vitro model for mineralization of human osteoblast-like cells on implant materials. Biomaterials 20:211–220

    Google Scholar 

  2. Albrektsson T, Isidor F (1994) Consensus report of session IV. In: Lang NP Karring T (eds) Proceedings of the First European Workshop on Periodontology. Quintessence, London, pp 365–369

  3. Alcoforado GA, Rams TE, Feik D, Slots J (1991) Microbial aspects of failing osseointegrated dental implants in humans. J Parodontol 10:11–18

    Google Scholar 

  4. Augthun M, Tinschert J, Huber A (1998) In vitro studies on the effect of cleaning methods on different implant surfaces. J Periodontol 69:857–864

    Google Scholar 

  5. Auschill TM, Arweiler NB, Netuschil L, Brecx M, Reich E, Sculean A, Artweiler NB (2001) Spatial distribution of vital and dead microorganisms in dental biofilms. Arch Oral Biol 46:471–476

    Google Scholar 

  6. Bach G, Neckel C, Mall C, Krekeler G (2000) Conventional versus laser-assisted therapy of periimplantitis: a five-year comparative study. Implant Dent 9:247–251

    Google Scholar 

  7. Baier RE, Meyer AE (1988) Implant surface preparation. Int J Oral Maxillofac Implants 3:9–20

    Google Scholar 

  8. Becker W, Becker BE, Newman MG, Nyman S (1990) Clinical and microbiologic findings that may contribute to dental implant failure. Int J Oral Maxillofac Implants 5:31–38

    Google Scholar 

  9. Cree IA, Pazzagli M, Mini E, Mazzei T, Hunter EM, Sutherland LA, Pinzani P, Gerli A, Andreotti PE (1995) Methotrexate chemosensitivity by ATP luminescence in human leukemia cell lines and in breast cancer primary cultures: comparison of the TCA-100 assay with a clonogenic assay. Anticancer Drugs 6:398–404

    Google Scholar 

  10. Crouch SP, Kozlowski R, Slater KJ, Fletcher J (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160:81–88

    Google Scholar 

  11. Eberhard J, Ehlers H, Falk W, Acil Y, Albers HK, Jepsen S (2003) Efficacy of subgingival calculus removal with Er:YAG laser compared to mechanical debridement: an in situ study. J Clin Periodontol 30:511–518

    Google Scholar 

  12. Ericsson I, Persson LG, Berglundh T, Edlund T, Lindhe J (1996) The effect of antimicrobial therapy on periimplantitis lesions. An experimental study in the dog. Clin Oral Implants Res 7:320–328

    Google Scholar 

  13. Fox SC, Moriarty JD, Kusy RP (1990) The effects of scaling a titanium implant surface with metal and plastic instruments: an in vitro study. J Periodontol 61:485–490

    Google Scholar 

  14. Hahn R, Netuschil L, Löst C (1992) Initiale Plaquebesiedlung auf keramischen Restaurationsmaterialien. Dtsch Zahnärztl Z 47:330–334

  15. Hartschen VJ, Frentzen M (2002) Effects of the ultrasonic Vector system compared to conventional ultrasonic and hand instrumentation (in German). Parodontologie 13:133–142

    Google Scholar 

  16. Kato T, Kusakari H, Hoshino E (1998) Bactericidal efficacy of carbon dioxide laser against bacteria-contaminated titanium implant and subsequent cellular adhesion to irradiated area. Lasers Surg Med 23:299–309

    Google Scholar 

  17. Kreisler M, Al Haj H, Götz H, Duschner H, d’Hoedt B (2002) Effect of simulated CO(2) and GaAlAs laser surface decontamination on temperature changes in Ti-plasma sprayed dental implants. Lasers Surg Med 30:233–239

    Google Scholar 

  18. Kreisler M, Götz H, Duschner H (2002) Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2, and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 17:202–211

    Google Scholar 

  19. Kreisler M, Kohnen W, Marinello C, Götz H, Duschner H, Jansen B, d’Hoedt B (2002) Bactericidal effect of the Er:YAG laser on dental implant surfaces: an in vitro study. J Periodontol 73:1292–1298

    Google Scholar 

  20. Löe H (1967) The gingival index, the plaque index and the retention index systems. J Periodontol 38(Suppl):610–616

    Google Scholar 

  21. Maehara Y, Anai H, Tamada R, Sugimachi K (1987) The ATP assay is more sensitive than the succinate dehydrogenase inhibition test for predicting cell viability. Eur J Cancer Clin Oncol 23:273–276

    Google Scholar 

  22. Mengel R, Buns CE, Mengel C, Flores-de-Jacoby L (1998) An in vitro study of the treatment of implant surfaces with different instruments. Int J Oral Maxillofac Implants 13:91–96

    Google Scholar 

  23. Mombelli A, Buser D, Lang NP (1988) Colonization of osseointegrated titanium implants in edentulous patients. Early results. Oral Microbiol Immunol 3:113–120

    Google Scholar 

  24. Mombelli A, Lang NP (1992) Antimicrobial treatment of peri-implant infections. Clin Oral Implants Res 3:162–168

    Google Scholar 

  25. Mombelli A, Lang NP (1994) Microbial aspects of implant dentistry. Periodontol 2000 4:74–80

    Google Scholar 

  26. Moritz A, Schoop U, Goharkhay K, Schauer P, Doertbudak O, Wernisch J, Sperr W (1998) Treatment of periodontal pockets with a diode laser. Lasers Surg Med 22:302–311

    Google Scholar 

  27. Oyster DK, Parker WB, Gher ME (1995) CO2 lasers and temperature changes of titanium implants. J Periodontol 66:1017–1024

    Google Scholar 

  28. Parham PL Jr, Cobb CM, French AA, Love JW, Drisko CL, Killoy WJ (1989) Effects of an air–powder abrasive system on plasma-sprayed titanium implant surfaces: an in vitro evaluation. J Oral Implantol 15:78–86

    Google Scholar 

  29. Petty RD, Sutherland LA, Hunter EM, Cree IA (1995) Comparison of MTT and ATP-based assays for the measurement of viable cell number. J Biolumin Chemilumin 10:29–34

    Google Scholar 

  30. Quirynen M, van der Mei HC, Bollen CM, Schotte A, Marechal M, Doornbusch GI, Naert I, Busscher HJ, van Steenberghe D (1993) An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. J Dent Res 72:1304–1309

    Google Scholar 

  31. Rams TE, Roberts TW, Tatum H Jr, Keyes PH (1984) The subgingival microbial flora associated with human dental implants. J Prosthet Dent 51:529–534

    Google Scholar 

  32. Rimondini L, Fare S, Brambilla E, Felloni A, Consonni C, Brossa F, Carrassi A (1997) The effect of surface roughness on early in vivo plaque colonization on titanium. J Periodontol 68:556–562

    Google Scholar 

  33. Romanos GE, Everts H, Nentwig GH (2000) Effects of diode and Nd:YAG laser irradiation on titanium discs: a scanning electron microscope examination. J Periodontol 71:810–815

    Google Scholar 

  34. Schenk G, Flemmig TF, Betz T, Reuther J, Klaiber B (1997) Controlled local delivery of tetracycline HCl in the treatment of periimplant mucosal hyperplasia and mucositis. A controlled case series. Clin Oral Implants Res 8:427–433

    Google Scholar 

  35. Schroeder HE (1965) Crystal morphology and gross structures of mineralizing plaque and of calculus. Helv Odontol Acta 35:73–86

    Google Scholar 

  36. Schwarz F, Rothamel D, Becker J (2003) Influence of an Er:YAG laser on the surface structure of titanium implants. Schweiz Monatsschr Zahnmed 113:660–671

    Google Scholar 

  37. Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J (2003) Effects of an Er:YAG laser and the vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res 14:784–792

    Google Scholar 

  38. Schwarz F, Sculean A, Berakdar M, Szathmari L, Georg T, Becker J (2003) In vivo and in vitro effects of an Er:YAG laser, a GaAlAs diode laser, and scaling and root planing on periodontally diseased root surfaces: a comparative histologic study. Lasers Surg Med 32:359–366

    Google Scholar 

  39. Schwarz F, Sculean A, Rothamel D, Schwenzer K, Georg T, Becker J (2005) Clinical evaluation of an Er:YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clin Oral Implants Res 16(1):44–52

    Google Scholar 

  40. Sennerby L, Lekholm U (1993) The soft tissue response to titanium abutments retrieved from humans and reimplanted in rats. A light microscopic study. Clin Oral Implants Res 4:23–27

    Google Scholar 

  41. Siegrist BE, Brecx MC, Gusberti FA, Joss A, Lang NP (1991) In vivo early human dental plaque formation on different supporting substances. A scanning electron microscopic and bacteriological study. Clin Oral Implants Res 2:38–46

    Google Scholar 

  42. Tucker D, Cobb CM, Rapley JW, Killoy WJ (1996) Morphologic changes following in vitro CO2 laser treatment of calculus-ladened root surfaces. Lasers Surg Med 18:150–156

    Google Scholar 

  43. Van de Velde E, Thielens P, Schautteet H, Vanclooster R (1991) Subcutaneous emphysema of the oral floor during cleaning of a bridge fixed on an IMZ implant. Case report. Rev Belge Med Dent 46:64–71

    Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the “Arbeitsgemeinschaft für Kieferchirurgie innerhalb der Deutschen Gesellschaft für Zahn-, Mund- und Kieferheilkunde”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Schwarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, F., Sculean, A., Romanos, G. et al. Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Invest 9, 111–117 (2005). https://doi.org/10.1007/s00784-005-0305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-005-0305-8

Keywords

Navigation