Skip to main content
Log in

Optimal insurance under maxmin expected utility

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We examine a problem of demand for insurance indemnification, when the insured is sensitive to ambiguity and behaves according to the maxmin expected utility model of Gilboa and Schmeidler (J. Math. Econ. 18:141–153, 1989), whereas the insurer is a (risk-averse or risk-neutral) expected-utility maximiser. We characterise optimal indemnity functions both with and without the customary ex ante no-sabotage requirement on feasible indemnities, and for both concave and linear utility functions for the two agents. This allows us to provide a unifying framework in which we examine the effects of the no-sabotage condition, of marginal utility of wealth, of belief heterogeneity, as well as of ambiguity (multiplicity of priors) on the structure of optimal indemnity functions. In particular, we show how a singularity in beliefs leads to an optimal indemnity function that involves full insurance on an event to which the insurer assigns zero probability, while the decision maker assigns a positive probability. We examine several illustrative examples, and we provide numerical studies for the case of a Wasserstein and a Rényi ambiguity set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alary, D., Gollier, C., Treich, N.: The effect of ambiguity aversion on insurance and self-protection. Econ. J. 123, 1188–1202 (2013)

    Article  Google Scholar 

  2. Aliprantis, C., Border, K.: Infinite Dimensional Analysis, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Allais, M.: Le comportement de l’homme rationnel devant le risque: Critique des axiomes et postulats de l’école américaine. Econometrica 21, 503–546 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amarante, M.: Foundations of neo-Bayesian statistics. J. Econ. Theory 144, 2146–2173 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amarante, M.: A characterization of exact non-atomic market games. J. Math. Econ. 54, 59–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arrow, K.: Uncertainty and the welfare economics of medical care. Am. Econ. Rev. 53, 941–973 (1963)

    Google Scholar 

  7. Artzner, P., Delbaen, F., Eber, J., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Asimit, A., Bignozzi, V., Cheung, K., Hu, J., Kim, E.S.: Robust and Pareto optimality of insurance contracts. Eur. J. Oper. Res. 262, 720–732 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Assa, H.: On optimal reinsurance policy with distortion risk measures and premiums. Insur. Math. Econ. 61, 70–75 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bell, D.: Regret in decision making under uncertainty. Oper. Res. 30, 961–981 (1982)

    Article  MATH  Google Scholar 

  11. Bell, D.: Disappointment in decision making under uncertainty. Oper. Res. 33, 1–27 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  13. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23, 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bernard, C., He, X., Yan, J., Zhou, X.: Optimal insurance design under rank-dependent expected utility. Math. Finance 25, 154–186 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52, 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Birghila, C., Pflug, G.: Optimal XL-insurance under Wasserstein-type ambiguity. Insur. Math. Econ. 88, 30–43 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Blanchet, J., He, F., Murthy, K.: On distributionally robust extreme value analysis. Extremes 23, 1–31 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boonen, T., Ghossoub, M.: On the existence of a representative reinsurer under heterogeneous beliefs. Insur. Math. Econ. 88, 209–225 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Boonen, T., Ghossoub, M.: Optimal reinsurance with multiple reinsurers: distortion risk measures, distortion premium principles, and heterogeneous beliefs. Insur. Math. Econ. 101, 23–37 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Breuer, T., Csiszár, I.: Measuring distribution model risk. Math. Finance 26, 395–411 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bühlmann, H.: An economic premium principle. ASTIN Bull. 11, 52–60 (1980)

    Article  MathSciNet  Google Scholar 

  22. Calafiore, G., El Ghaoui, L.: On distributionally robust chance-constrained linear programs. J. Optim. Theory Appl. 130, 1–22 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Carlier, G., Dana, R.: Pareto efficient insurance contracts when the insurer’s cost function is discontinuous. Econ. Theory 21, 871–893 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chateauneuf, A., Maccheroni, F., Marinacci, M., Tallon, J.: Monotone continuous multiple priors. Econ. Theory 26, 973–982 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cheung, K., Chong, W., Lo, A.: Budget-constrained optimal reinsurance design under coherent risk measures. Scand. Actuar. J. 2019(9), 729–751 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cheung, K., Chong, W., Yam, S.: The optimal insurance under disappointment theories. Insur. Math. Econ. 64, 77–90 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chi, Y.: On the optimality of a straight deductible under belief heterogeneity. ASTIN Bull. 49, 243–262 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chi, Y., Wei, W.: Optimal insurance with background risk: an analysis of general dependence structures. Finance Stoch. 24, 903–937 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chi, Y., Zhuang, S.: Regret-based optimal insurance design. Insur. Math. Econ. 102, 22–41 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dana, R., Scarsini, M.: Optimal risk sharing with background risk. J. Econ. Theory 133, 152–176 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58, 595–612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schönbucher, P.J. (eds.) Advances in Finance and Stochastics. Essays in Honour of Dieter Sondermann, pp. 1–37. Springer, Berlin (2002)

    Google Scholar 

  33. Dunford, N., Schwartz, J.: Linear Operators, Part 1: General Theory. Wiley-Interscience, New York (1958)

    MATH  Google Scholar 

  34. Ellsberg, D.: Risk, ambiguity and the Savage axioms. Q. J. Econ. 75, 643–669 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  35. Esfahani, P.M., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Math. Program. 171, 115–166 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Furman, E., Zitikis, R.: Weighted premium calculation principles. Insur. Math. Econ. 42, 459–465 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Furman, E., Zitikis, R.: Weighted risk capital allocations. Insur. Math. Econ. 43, 263–269 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Furman, E., Zitikis, R.: Weighted pricing functionals with applications to insurance. N. Am. Actuar. J. 13, 483–496 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ghirardato, P., Maccheroni, F., Marinacci, M.: Differentiating ambiguity and ambiguity attitude. J. Econ. Theory 118, 133–173 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ghossoub, M.: Budget-constrained optimal insurance with belief heterogeneity. Insur. Math. Econ. 89, 79–91 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ghossoub, M.: Optimal insurance under rank-dependent expected utility. Insur. Math. Econ. 87, 51–66 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gilboa, I., Schmeidler, D.: Maxmin expected utility with a non-unique prior. J. Math. Econ. 18, 141–153 (1989)

    Article  MATH  Google Scholar 

  43. Gollier, C.: The economics of optimal insurance design. In: Dionne, G. (ed.) Handbook of Insurance, pp. 107–122. Springer, New York (2013)

    Chapter  Google Scholar 

  44. Gollier, C.: Optimal insurance design of ambiguous risks. Econ. Theory 57, 555–576 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gul, F.: A theory of disappointment aversion. Econometrica 59, 667–686 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Huberman, G., Mayers, D., Smith, C. Jr.: Optimal insurance policy indemnity schedules. Bell J. Econ. 14, 415–426 (1983)

    Article  Google Scholar 

  47. Inada, K.: On a two-sector model of economic growth: comments and a generalization. Rev. Econ. Stud. 30, 119–127 (1963)

    Article  Google Scholar 

  48. Jeleva, M.: Background risk, demand for insurance, and Choquet expected utility preferences. Geneva Pap. Risk Insur. Theory 25, 7–28 (2000)

    Article  Google Scholar 

  49. Jiang, W., Escobar-Anel, M., Ren, J.: Optimal insurance contracts under distortion risk measures with ambiguity aversion. ASTIN Bull. 50, 619–646 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Klibanoff, P., Marinacci, M., Mukerji, S.: A smooth model of decision making under ambiguity. Econometrica 73, 1849–1892 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Liese, F., Vajda, I.: On divergences and informations in statistics and information theory. IEEE Trans. Inf. Theory 52, 4394–4412 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Loomes, G., Sugden, R.: Regret theory: an alternative theory of rational choice under uncertainty. Econ. J. 92, 805–824 (1982)

    Article  Google Scholar 

  53. Loomes, G., Sugden, R.: Disappointment and dynamic consistency in choice under uncertainty. Rev. Econ. Stud. 53, 271–282 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  54. Maccheroni, F., Marinacci, M.: A Heine–Borel theorem for \(ba(\Sigma)\). RISEC 48, 353–362 (2001)

    Google Scholar 

  55. Machina, M.: Non-expected utility and the robustness of the classical insurance paradigm. In: Dionne, G. (ed.) Handbook of Insurance, pp. 59–106. Springer, New York (2013)

    Chapter  Google Scholar 

  56. Mossin, J.: Aspects of rational insurance purchasing. J. Polit. Econ. 76, 553–568 (1968)

    Article  Google Scholar 

  57. Pflug, G., Pichler, A.: Multistage Stochastic Optimization. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  58. Pflug, G., Timonina-Farkas, A., Hochrainer-Stigler, S.: Incorporating model uncertainty into optimal insurance contract design. Insur. Math. Econ. 73, 68–74 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Quiggin, J.: A theory of anticipated utility. J. Econ. Behav. Organ. 3, 323–343 (1982)

    Article  Google Scholar 

  60. Rényi, A.: On measures of entropy and information. In: Neyman, J. (ed.) Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, pp. 547–561. University of California Press, Oakland (1961)

    Google Scholar 

  61. Scarf, H.: A min–max solution of an inventory problem. In: Arrow, K.J., et al. (eds.) Studies in the Mathematical Theory of Inventory and Production, pp. 201–209. Stanford University Press, Stanford (1958)

    Google Scholar 

  62. Schlesinger, H.: The theory of insurance demand. In: Dionne, G. (ed.) Handbook of Insurance, pp. 167–184. Springer, New York (2000)

    Google Scholar 

  63. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  64. Shapiro, A., Kleywegt, A.: Minimax analysis of stochastic problems. Optim. Methods Softw. 17, 523–542 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  65. Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  66. Thiele, A.: Robust stochastic programming with uncertain probabilities. IMA J. Manag. Math. 19, 289–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. Vallender, S.: Calculation of the Wasserstein distance between probability distributions on the line. Theory Probab. Appl. 18, 784–786 (1974)

    Article  Google Scholar 

  68. Van Erven, T., Harremos, P.: Rényi divergence and Kullback–Leibler divergence. IEEE Trans. Inf. Theory 60, 3797–3820 (2014)

    Article  MATH  Google Scholar 

  69. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2008)

    MATH  Google Scholar 

  70. Wozabal, D.: A framework for optimization under ambiguity. Ann. Oper. Res. 193, 21–47 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  71. Xu, Z.: Pareto optimal moral-hazard-free insurance contracts in behavioral finance framework Preprint (2021). Available online at https://arxiv.org/pdf/1803.02546.pdf

  72. Xu, Z., Zhou, X., Zhuang, S.: Optimal insurance under rank-dependent utility and incentive compatibility. Math. Finance 21, 503–534 (2018)

    Google Scholar 

  73. Yaari, M.: The dual theory of choice under risk. Econometrica 55, 95–115 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  74. Yu, H., Fang, Y.: Optimal insurance under heterogeneous belief. J. Financ. Risk Manag. 9, 179–189 (2020)

    Article  Google Scholar 

  75. Žáčková, J.: On minimax solutions of stochastic linear programming problems. Časopis pro PěstováníMatematiky 91, 423–430 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  76. Zhuang, S., Weng, C., Tan, K.S., Assa, H.: Marginal indemnification function formulation for optimal reinsurance. Insur. Math. Econ. 67, 65–76 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  77. Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order moment information. Math. Program. 137, 167–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the Editor, Associate Editor and an anonymous reviewer for comments and suggestions that have improved this paper. We are grateful to Frank Riedel, Roger J.A. Laeven and Michel Vellekoop as well as audiences at the 2020 Oberwolfach workshop New Challenges in the Interplay between Finance and Insurance, the University of Amsterdam and the 2021 SIAM Conference on Financial Mathematics and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Ghossoub.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mario Ghossoub acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC Grant No. 2018-03961).

Appendix: Convexity and compactness of the ambiguity set in Example 4.4

Appendix: Convexity and compactness of the ambiguity set in Example 4.4

Lemma A.1

For a fixed \(Q \in ca^{+}_{1}(\Sigma )\), let \(\mathcal{C}_{\mathcal{W}}\) be the set defined as

$$ \mathcal{C}_{\mathcal{W}}:=\bigg\lbrace P\in ca^{+}_{1}(\Sigma ): \frac{dP}{dQ}=\frac{w(X)}{\int w(X)dQ},\, w\in \mathcal{W} \bigg\rbrace , $$

where \(\mathcal{W} \subseteq L^{1} (\mathbb{R}, \mathcal{B}(\mathbb{R}), Q \circ X^{-1} )\) is a collection of nonnegative increasing weight functions such that \(\int w(X)dQ > 0\) for all \(w \in \mathcal{W}\). Then the following hold:

(i) If \(\mathcal{W}\) is a convex cone, then \(\mathcal{C}_{\mathcal{W}}\) is convex.

(ii) If \(\mathcal{C}_{\mathcal{W}}\) is uniformly absolutely continuous with respect to some \(\mu \in ca^{+}(\Sigma )\), then \(\mathcal{C}_{\mathcal{W}}\) is weak-compact.

Proof

(i) is easy to verify. To show (ii), first note that \(\mathcal{C}_{\mathcal{W}}\) is norm-bounded. Since \(\mathcal{C}_{\mathcal{W}}\) is also uniformly absolutely continuous with respect to \(\mu \in ca^{+}(\Sigma )\), it follows from Dunford [33, Theorem IV.9.2] that \(\mathcal{C}_{\mathcal{W}}\) is weakly sequentially compact and hence weak-compact by Maccheroni and Marinacci [54, Theorem 1]. □

Remark A.2

In Lemma A.1, if \(\mathcal{C}_{\mathcal{W}}\) is countable, that is, of the form

$$ \bigg\lbrace P_{n}\in ca^{+}_{1}(\Sigma ): n \in \mathbb{N}, \, \frac{dP_{n}}{dQ}=\frac{w_{n}(X)}{\int w_{n}(X)dQ},\, w_{n}\in \mathcal{W}\bigg\rbrace , $$

and if \(\lim _{n \rightarrow \infty} P_{n}[A]\) exists for each \(A \in \Sigma \), then the requirement of uniform absolute continuity of \(\mathcal{C}_{\mathcal{W}}\) is superfluous by the Vitali–Hahn–Saks theorem (Dunford [33, Theorem III.7.2]).

Proposition A.3

If \(\mathcal{W}\) is order bounded in the Banach lattice \(L^{1} (\mathbb{R}, \mathcal{B}(\mathbb{R}), Q \circ X^{-1} )\) with a constant upper bound and a nonnegative lower bound having nonzero \(L^{1}\)-norm, then \(\mathcal{C}_{\mathcal{W}}\) is uniformly absolutely continuous with respect to \(Q\).

Proof

If \(\mathcal{W}\) is order bounded in \(L^{1} (\mathbb{R}, \mathcal{B}(\mathbb{R}), Q \circ X^{-1} )\) with a constant upper bound and a nonnegative lower bound having nonzero \(L^{1}\)-norm, then there exist \(M \in \mathbb{R}_{+}\) and \(f \in L^{1}_{+} (\mathbb{R}, \mathcal{B}(\mathbb{R}), Q \circ X^{-1} )\) such that \(\Vert f\Vert _{1} = \int f\,d(Q \circ X^{-1}) > 0\) and \(f \leq w \leq M\) for each \(w \in \mathcal{W}\). Consequently, for each \(P \in \mathcal{C}_{\mathcal{W}}\),

$$ \frac{dP}{dQ} \leq \frac{M}{\Vert f\Vert _{1}} < \infty . $$

Hence for each \(P \in \mathcal{C}_{\mathcal{W}}\) and each \(A \in \Sigma \),

$$ P[A] \leq \frac{M}{\|f\|_{1}} \,Q[A]. $$

Consequently, for each \(\varepsilon > 0\), letting \(\delta := \frac{\Vert f\Vert _{1}}{M} \, \varepsilon > 0\), it follows that for each \(A \in \Sigma \) and each \(P \in \mathcal{C}_{\mathcal{W}}\),

$$ Q[A] < \delta \text{ implies that } P[A] < \frac{M}{\Vert f\Vert _{1}} \, \delta = \varepsilon . $$

Hence \(\mathcal{C}_{\mathcal{W}}\) is uniformly absolutely continuous with respect to \(Q\). □

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birghila, C., Boonen, T.J. & Ghossoub, M. Optimal insurance under maxmin expected utility. Finance Stoch 27, 467–501 (2023). https://doi.org/10.1007/s00780-023-00497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-023-00497-y

Keywords

Mathematics Subject Classification (2020)

JEL Classification

Navigation