Skip to main content
Log in

A scaling limit for utility indifference prices in the discretised Bachelier model

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We consider the discretised Bachelier model where hedging is done on a set of equidistant times. Exponential utility indifference prices are studied for path-dependent European options, and we compute their non-trivial scaling limit for a large number of trading times \(n\) and when risk aversion is scaled like \(n\ell \) for some constant \(\ell >0\). Our analysis is purely probabilistic. We first use a duality argument to transform the problem into an optimal drift control problem with a penalty term. We further use martingale techniques and strong invariance principles and obtain that the limiting problem takes the form of a volatility control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, P., Dolinsky, Y.: A note on utility indifference pricing with delayed information. SIAM J. Financ. Math. 12, SC31–SC43 (2021)

    Article  MathSciNet  Google Scholar 

  2. Barles, G., Soner, H.M.: Option pricing with transaction costs and a nonlinear Black–Scholes equation. Finance Stoch. 2, 369–397 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bertsimas, D., Kogan, L., Lo, A.W.: When is time continuous? J. Financ. Econ. 55, 173–204 (2000)

    Article  Google Scholar 

  4. Cai, J., Fukasawa, M., Rosenbaum, M., Tankov, P.: Optimal discretization of hedging strategies with directional views. SIAM J. Financ. Math. 7, 34–69 (2016)

    Article  MathSciNet  Google Scholar 

  5. Carmona, R.: Indifference Pricing: Theory and Applications. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  6. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MathSciNet  Google Scholar 

  7. Dolinsky, Y.: Numerical schemes for \(G\)-expectations. Electron. J. Probab. 17, 1–15 (2012)

    Article  MathSciNet  Google Scholar 

  8. Fleming, W.H.: Risk sensitive stochastic control and differential games. Commun. Inf. Syst. 6, 161–177 (2006)

    Article  MathSciNet  Google Scholar 

  9. Föllmer, H., Schied, A.: Stochastic Finance. An Introduction in Discrete Time, 4th edn. de Gruyter, Berlin (2016)

    Book  Google Scholar 

  10. Frittelli, M.: The minimal entropy martingale measure and the valuation problem in incomplete markets. Math. Finance 10, 39–52 (2000)

    Article  MathSciNet  Google Scholar 

  11. Fukasawa, M.: Discretization error of stochastic integrals. Ann. Appl. Probab. 21, 1436–1465 (2011)

    Article  MathSciNet  Google Scholar 

  12. Fukasawa, M.: Efficient discretization of stochastic integrals. Finance Stoch. 18, 175–208 (2014)

    Article  MathSciNet  Google Scholar 

  13. Galichon, A., Henry-Labordère, P., Touzi, N.: A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options. Ann. Appl. Probab. 24, 312–336 (2014)

    Article  MathSciNet  Google Scholar 

  14. Geiss, S.: Quantitative approximation of certain stochastic integrals. Stoch. Stoch. Rep. 73, 241–270 (2002)

    Article  MathSciNet  Google Scholar 

  15. Geiss, S.: Weighted BMO and discrete time hedging within the Black–Scholes model. Probab. Theory Relat. Fields 132, 13–38 (2005)

    Article  MathSciNet  Google Scholar 

  16. Geiss, S., Toivola, A.: Weak convergence of error processes in discretizations of stochastic integrals and Besov spaces. Bernoulli 15, 925–954 (2009)

    Article  MathSciNet  Google Scholar 

  17. Gobet, E., Makhlouf, A.: The tracking error rate of the delta-gamma hedging strategy. Math. Finance 22, 277–309 (2012)

    Article  MathSciNet  Google Scholar 

  18. Gobet, E., Temam, E.: Discrete time hedging errors for options with irregular payoffs. Finance Stoch. 5, 357–367 (2001)

    Article  MathSciNet  Google Scholar 

  19. Hayashi, T., Mykland, P.A.: Evaluating hedging errors: an asymptotic approach. Math. Finance 15, 309–343 (2005)

    Article  MathSciNet  Google Scholar 

  20. Hernández-Hernández, D.: On the relation between risk sensitive control and indifference pricing. In: 2008 American Control Conference, pp. 1013–1016. IEEE Press, New York (2008)

    Chapter  Google Scholar 

  21. Kallenberg, O.: On the existence of universal functional solutions to classical SDEs. Ann. Probab. 24, 196–205 (1996)

    Article  MathSciNet  Google Scholar 

  22. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  23. Napp, C.: The Dalang–Morton–Willinger theorem under cone constraints. J. Math. Econ. 39, 111–126 (2003)

    Article  MathSciNet  Google Scholar 

  24. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  25. Skorohod, A.V.: On a representation of random variables. Teor. Veroâtn. Primen. 21, 645–648 (1976)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous AE and reviewer for their valuable reports and comments which helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Dolinsky.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Cohen acknowledges the financial support of the National Science Foundation (DMS-2006305). Y. Dolinsky is supported in part by the GIF Grant 1489-304.6/2019 and the ISF grant 230/21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, A., Dolinsky, Y. A scaling limit for utility indifference prices in the discretised Bachelier model. Finance Stoch 26, 335–358 (2022). https://doi.org/10.1007/s00780-022-00473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-022-00473-y

Keywords

Mathematics Subject Classification (2020)

JEL Classification

Navigation