Skip to main content
Log in

Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

This paper is devoted to studying the difference between the fair strike of a volatility swap and the at-the-money implied volatility (ATMI) of a European call option. It is well known that the difference between these two quantities converges to zero as the time to maturity decreases. In this paper, we make use of a Malliavin calculus approach to derive an exact expression for this difference. This representation allows us to establish that the order of convergence is different in the correlated and uncorrelated cases, and that it depends on the behavior of the Malliavin derivative of the volatility process. In particular, we see that for volatilities driven by a fractional Brownian motion, this order depends on the corresponding Hurst parameter \(H\). Moreover, in the case \(H\geq 1/2\), we develop a model-free approximation formula for the volatility swap in terms of the ATMI and its skew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akahori, J., Song, X., Wang, T.H.: Probability density of lognormal fractional SABR model. Working paper (2017). Available online at: arXiv:1702.08081

  2. Alòs, E.: A generalization of the Hull and White formula with applications to option pricing approximation. Finance Stoch. 10, 353–365 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alòs, E., León, J.A.: On the curvature of the smile in stochastic volatility models. SIAM J. Financ. Math. 8, 373–399 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alòs, E., León, J.A., Vives, J.: On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11, 571–589 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergomi, L., Guyon, J.: The smile in stochastic volatility models. Working paper (2011). Available online at: https://ssrn.com/abstract=1967470

  6. Carr, P., Lee, R.: Robust replication of volatility derivatives, PRMIA award for Best Paper in Derivatives. In: MFA 2008 Annual Meeting (2008). Available online at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.378.189&rep=rep1&type=pdf

    Google Scholar 

  7. Carr, P., Lee, R.: Volatility derivatives. Annu. Rev. Finance Econ. 1, 319–339 (2009)

    Article  Google Scholar 

  8. Comte, F., Renault, E.: Long memory in continuous-time stochastic volatility models. Math. Finance 8, 291–323 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demeterfi, K., Derman, E., Kamal, M., Zou, J.: A guide to volatility and variance swaps. J. Deriv. 6(4), 9–32 (1999)

    Article  Google Scholar 

  10. El Euch, O., Fukasawa, M., Gatheral, J., Rosenbaum, M.: Short-term at-the-money asymptotics under stochastic volatility models. Working paper (2018). Available online at: https://ssrn.com/abstract=3111471

  11. Feinstein, S.: Forecasting stock market volatility using options on index futures. Econ. Rev. 74(3), 12–30 (1989)

    MathSciNet  Google Scholar 

  12. Friz, P., Gatheral, J.: Valuation of volatility derivatives as an inverse problem. Quant. Finance 5, 531–542 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fukasawa, M.: Asymptotic analysis for stochastic volatility: martingale expansion. Finance Stoch. 15, 635–654 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fukasawa, M.: Volatility derivatives and model-free implied leverage. Int. J. Theor. Appl. Finance 17, 1450002 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18, 933–949 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  17. Nualart, D., Răşcanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53, 55–81 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Romano, M., Touzi, N.: Contingent claims and market completeness in a stochastic volatility model. Math. Finance 7, 399–410 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Willard, G.A.: Calculating prices and sensitivities for path-independent securities in multifactor models. J. Deriv. 5, 45–61 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Alòs.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

E.A. supported by grants ECO2014-59885-P and MTM2016-76420-P.

K.S. supported by CARF (Center for Advanced Research in Finance).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alòs, E., Shiraya, K. Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach. Finance Stoch 23, 423–447 (2019). https://doi.org/10.1007/s00780-019-00384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-019-00384-5

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation