Almost-sure hedging with permanent price impact

Abstract

We consider a financial model with permanent price impact. Continuous-time trading dynamics are derived as the limit of discrete rebalancing policies. We then study the problem of superhedging a European option. Our main result is the derivation of a quasilinear pricing equation. It holds in the sense of viscosity solutions. When it admits a smooth solution, it provides a perfect hedging strategy.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abergel, F., Loeper, G.: Pricing and hedging contingent claims with liquidity costs and market impact. Available online at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2239498 (2013)

  2. 2.

    Barles, G.: Solutions de Viscosité des Équations de Hamilton–Jacobi. Springer, Berlin (1994)

    Google Scholar 

  3. 3.

    Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control. The Discrete-Time Case. Academic Press, New York (1978)

    Google Scholar 

  4. 4.

    Bogachev, V.I., Ruas, M.A.S.: Measure Theory, vol. 1. Springer, Berlin (2007)

    Google Scholar 

  5. 5.

    Bouchard, B., Elie, R., Touzi, N.: Stochastic target problems with controlled loss. SIAM J. Control Optim. 48, 3123–3150 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Çetin, U., Jarrow, R.A., Protter, P.: Liquidity risk and arbitrage pricing theory. Finance Stoch. 8, 311–341 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Çetin, U., Soner, H.M., Touzi, N.: Option hedging for small investors under liquidity costs. Finance Stoch. 14, 317–341 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Cheridito, P., Soner, H.M., Touzi, N.: The multi-dimensional super-replication problem under gamma constraints. Ann. Inst. Henri Poincaré, C Anal. Non Linéaire 22, 633–666 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Crauel, H.: Random Probability Measures on Polish Spaces. Stochastics Monographs, vol. 11. CRC Press, Boca Raton (2003)

    Google Scholar 

  10. 10.

    Frey, R.: Perfect option hedging for a large trader. Finance Stoch. 2, 115–141 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Ladyzhenskaia, O.A., Solonnikov, V., Ural’tseva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. Translations of Mathematical Monographs, vol. 23. Am. Math. Soc., Providence (1988)

    Google Scholar 

  12. 12.

    Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996)

    Google Scholar 

  13. 13.

    Liu, H., Yong, J.M.: Option pricing with an illiquid underlying asset market. J. Econ. Dyn. Control 29, 2125–2156 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Loeper, G.: Option pricing with market impact and non-linear Black and Scholes PDEs. Available online at arXiv:1301.6252 (2013)

  15. 15.

    Schönbucher, P.J., Wilmott, P.: The feedback effects of hedging in illiquid markets. SIAM J. Appl. Math. 61, 232–272 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Sircar, K.R., Papanicolaou, G.: Generalized Black–Scholes models accounting for increased market volatility from hedging strategies. Appl. Math. Finance 5, 45–82 (1998)

    Article  MATH  Google Scholar 

  17. 17.

    Soner, H.M., Touzi, N.: Superreplication under gamma constraints. SIAM J. Control Optim. 39, 73–96 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Soner, H.M., Touzi, N.: Dynamic programming for stochastic target problems and geometric flows. J. Eur. Math. Soc. 4, 201–236 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Soner, H.M., Touzi, N.: Hedging under gamma constraints by optimal stopping and face-lifting. Math. Finance 17, 59–80 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Soner, H.M., Touzi, N.: The dynamic programming equation for second order stochastic target problems. SIAM J. Control Optim. 48, 2344–2365 (2009)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruno Bouchard.

Additional information

Research supported by ANR Liquirisk and Investissements d’Avenir (ANR-11-IDEX-0003/Labex Ecodec/ANR-11-LABX-0047).

Appendix

Appendix

We report here the measurability property that was used in the proof of Proposition 3.3.

In the following, \({\mathcal {A}}_{k}\) is viewed as a closed subset of the Polish space \({\mathbf {L}}_{\lambda}^{2}\) endowed with the usual (strong) norm topology \(\|\cdot\|_{{\mathbf {L}}_{\lambda}^{2}}\).

We consider an element \(\nu\in{\mathcal {U}}_{k}\) as a measurable map \(\varOmega\ni\omega\mapsto\nu(\omega) \in {\mathcal {M}} _{k}\), where \({\mathcal {M}}_{k}\) denotes the set of nonnegative Borel measures on \({\mathbb{R}}\times[0,T]\) with total mass at most \(k\), endowed with the topology of weak convergence. This topology is generated by the norm

$$ \|m\|_{{\mathcal {M}}}:=\sup\bigg\{ \int_{{\mathbb{R}}\times[0,T]} \ell(\delta,s) m(d\delta,ds): \ell\in\mathrm{Lip}_{1}\bigg\} , $$

in which \(\mathrm{Lip}_{1}\) denotes the class of 1-Lipschitz-continuous functions bounded by 1; see e.g. [4, Proposition 7.2.2 and Theorem 8.3.2]. Then \({\mathcal {U}}_{k}\) is a closed subset of the space \(\mathbf{M}_{k}^{2}\) of \({\mathcal {M}}_{k}\)-valued random variables. \(\mathbf{M}_{k}^{2}\) is made complete and separable by the norm

$$ \|\nu\|_{\mathbf{M}^{2}}:=\mathbb{E}\big[\|\nu\|_{{\mathcal {M}}}^{2}\big]^{\frac{1}{2}}; $$

see e.g. [9, Chap. 5]. We endow the set of controls \(\varGamma_{k}\) with the natural product topology

$$ \|\gamma\|_{{\mathbf {L}}_{\lambda}^{2}\times\mathbf{M}^{2}}:=\| \vartheta\|_{{\mathbf {L}} _{\lambda}^{2}}+\|\nu\|_{\mathbf{M}^{2}},\;\mbox{ for } \gamma =(\vartheta,\nu). $$

As a closed subset of the Polish space \({\mathbf {L}}_{\lambda }^{2}\times\mathbf{M} _{k}^{2}\), \(\varGamma_{k}\) is a Borel space, for each \(k\ge1\). See e.g. [3, Proposition 7.12].

The following stability result is proved by using standard estimates. In the following, we use the notation \(Z=(X,Y,V)\).

Proposition A.1

For each \(k\ge1\), there exists a real constant \(c_{k}>0\) such that

$$ \|Z^{t_{1},z_{1},\gamma_{1}}_{T}-Z^{t_{2},z_{2},\gamma_{2}}_{T}\| _{{\mathbf {L}}^{2}}\le c_{k}\Big(|t_{1}-t_{2}|^{\frac{1}{2}}+|z_{1}-z_{2}|+\| \gamma_{1}-\gamma_{2}\|_{{\mathbf {L}}_{\lambda}^{2}\times\mathbf {M}^{2}} \Big) $$

for all \((t_{i},z_{i},\gamma_{i})\in\mathrm{D}\times\varGamma_{k}\), \(i=1,2\).

A direct consequence is the continuity of \(\mathrm{D}\times\varGamma _{k}\ni (t,z,\gamma) \mapsto Z^{t,z,\gamma}_{T}\), which is therefore measurable.

Corollary A.2

For each \(k\ge1\), the map \(\mathrm{D}\times\varGamma_{k}\ni(t,z,\gamma)\mapsto Z^{t,z,\gamma}_{T} \in{\mathbf {L}}^{2}\) is Borel-measurable.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouchard, B., Loeper, G. & Zou, Y. Almost-sure hedging with permanent price impact. Finance Stoch 20, 741–771 (2016). https://doi.org/10.1007/s00780-016-0295-1

Download citation

Keywords

  • Hedging
  • Price impact

Mathematics Subject Classification

  • 91G20
  • 93E20
  • 49L20

JEL Classification

  • G13
  • G12