Aliprantis, Ch.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)
Google Scholar
Aliprantis, Ch.D., Tourky, R.: Cones and Duality. American Mathematical Society, Providence (2007)
MATH
Google Scholar
Arai, T.: Good deal bounds induced by shortfall risk. SIAM J. Financ. Math. 2, 1–21 (2011)
Article
MATH
MathSciNet
Google Scholar
Artzner, Ph., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)
Article
MATH
MathSciNet
Google Scholar
Artzner, Ph., Delbaen, F., Koch-Medina, P.: Risk measures and efficient use of capital. ASTIN Bull. 39, 101–116 (2009)
Article
MATH
MathSciNet
Google Scholar
Biagini, S., Frittelli, M.: A unified framework for utility maximization problems: an Orlicz space approach. Ann. Appl. Probab. 18, 929–966 (2008)
Article
MATH
MathSciNet
Google Scholar
Biagini, S., Frittelli, M.: On the extension of the Namioka–Klee theorem and on the Fatou property for risk measures. In: Delbaen, F., Rasonyi, M., Stricker, C. (eds.) Optimality and Risk: Modern Trends in Mathematical Finance, pp. 1–28. Springer, Berlin (2009)
Chapter
Google Scholar
Borwein, J.M.: Automatic continuity and openness of convex relations. Proc. Am. Math. Soc. 99, 49–55 (1987)
Article
MATH
Google Scholar
Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Risk measures: rationality and diversification. Math. Finance 21, 743–774 (2011)
MATH
MathSciNet
Google Scholar
Chambers, C.P.: An axiomatization of quantiles on the domain of distribution functions. Math. Finance 19, 335–342 (2009)
Article
MATH
MathSciNet
Google Scholar
Cheridito, P., Li, T.: Risk measures on Orlicz hearts. Math. Finance 19, 184–214 (2009)
Article
MathSciNet
Google Scholar
Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schönbucher, P.J. (eds.) Advances in Finance and Stochastics: Essays in Honour of Dieter Sondermann, pp. 1–37. Springer, Berlin (2002)
Chapter
Google Scholar
Drapeau, S., Kupper, M.: Risk preferences and their robust representations. Math. Oper. Res. 38, 28–62 (2013)
Article
MathSciNet
Google Scholar
Edgar, G.A., Sucheston, L.: Stopping Times and Directed Processes. Cambridge University Press, Cambridge (1992)
Book
MATH
Google Scholar
Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999)
Book
MATH
Google Scholar
El Karoui, N., Ravanelli, C.: Cash subadditive risk measures and interest rate ambiguity. Math. Finance 19, 561–590 (2009)
Article
MATH
MathSciNet
Google Scholar
Farkas, W., Koch-Medina, P., Munari, C.: Capital requirements with defaultable securities. Insur. Math. Econ. (2013, forthcoming). arXiv:1203.4610 (May 2013)
Filipović, D., Kupper, M.: Monotone and cash-invariant convex functions and hulls. Insur. Math. Econ. 41, 1–16 (2007)
Article
MATH
Google Scholar
Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 3rd edn. De Gruyter, Berlin (2011)
Book
Google Scholar
Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. J. Bank. Finance 26, 1473–1486 (2002)
Article
Google Scholar
Frittelli, M., Scandolo, G.: Risk measures and capital requirements for processes. Math. Finance 16, 589–612 (2006)
Article
MATH
MathSciNet
Google Scholar
Hamel, A.H.: Translative sets and functions and their applications to risk measure theory and nonlinear separation. IMPA, Preprint Series D (2006). http://preprint.impa.br/FullText/Hamel__Fri_Mar_17_20_32_27_BRST_2006/acrm-main2.pdf
Hamel, A.H., Heyde, F., Rudloff, B.: Set-valued risk measures for conical market models. Math. Financ. Econ. 5, 1–28 (2011)
Article
MATH
MathSciNet
Google Scholar
Jaschke, S., Küchler, U.: Coherent risk measures and good-deal bounds. Finance Stoch. 5, 181–200 (2001)
Article
MATH
MathSciNet
Google Scholar
Kaina, M., Rüschendorf, L.: On convex risk measures on L
p-spaces. Math. Methods Oper. Res. 69, 475–495 (2009)
Article
MATH
MathSciNet
Google Scholar
Konstantinides, D.G., Kountzakis, C.E.: Risk measures in ordered normed linear spaces with nonempty cone-interior. Insur. Math. Econ. 48, 111–122 (2011)
Article
MATH
MathSciNet
Google Scholar
Krätschmer, V., Schied, A., Zähle, H.: Comparative and qualitative robustness for law-invariant risk measures. Finance Stoch. (2013, forthcoming). arXiv:1204.2458
Orihuela, J., Ruiz Galan, M.: Lebesgue property for convex risk measures on Orlicz spaces. Math. Financ. Econ. 6, 15–35 (2012)
Article
MATH
MathSciNet
Google Scholar
Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)
Book
MATH
Google Scholar
Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)
Book
Google Scholar
Svindland, G.: Convex risk measures beyond bounded risks. PhD Dissertation, München (2008). http://edoc.ub.uni-muenchen.de/9715/