Skip to main content
Log in

Efficient discretization of stochastic integrals

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Sharp asymptotic lower bounds on the expected quadratic variation of the discretization error in stochastic integration are given when the integrator admits a predictable quadratic variation and the integrand is a continuous semimartingale with nondegenerate local martingale part. The theory relies on inequalities for the kurtosis and skewness of a general random variable which are themselves seemingly new. Asymptotically efficient schemes which attain the lower bounds are constructed explicitly. The result is directly applicable to a practical hedging problem in mathematical finance; for hedging a payoff which is replicated by a continuous-time trading strategy, it gives an asymptotically optimal way to choose discrete rebalancing dates and portfolios with respect to transaction costs. The asymptotically efficient strategies in fact reflect the structure of the transaction costs. In particular, a specific biased rebalancing scheme is shown to be superior to unbiased schemes if the transaction costs follow a convex model. The problem is discussed also in terms of exponential utility maximization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ansel, J.P., Stricker, C.: Lois de martingale, densité et décomposition de Föllmer Schweizer. Ann. Inst. Henri Poincaré 28, 375–392 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Bertsimas, D., Kogan, L., Lo, A.W.: When is time continuous? J. Financ. Econ. 55, 173–204 (2000)

    Article  Google Scholar 

  3. Çetin, U., Jarrow, R.A., Protter, P.: Liquidity risk and arbitrage pricing theory. Finance Stoch. 8, 311–341 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Davis, M.H.A., Panas, V.G., Zariphopoulou, T.: European option pricing with transaction costs. SIAM J. Control Optim. 31, 470–493 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Denis, E., Kabanov, Y.: Mean square error for the Leland–Lott hedging strategy: convex payoffs. Finance Stoch. 14, 625–667 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. El Karoui, N., Jeanblanc-Picqué, M., Shreve, S.E.: Robustness of the Black and Scholes formula. Math. Finance 8, 93–126 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fukasawa, M.: Asymptotic efficiency for discrete hedging strategies. Selected Papers for the 10th Anniversary of Financial Technology Research Institute, Inc. (2009) (in Japanese). Available online at http://www-csfi.sigmath.es.osaka-u.ac.jp/database/technicalreport/9_14.pdf

  8. Fukasawa, M.: Realized volatility with stochastic sampling. Stoch. Process. Appl. 120, 829–852 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fukasawa, M.: Discretization error of stochastic integrals. Ann. Appl. Probab. 21, 1436–1465 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fukasawa, M.: Asymptotically efficient discrete hedging. In: Kohatsu-Higa, A., Privault, N., Sheu, S.-J. (eds.) Stochastic Analysis with Financial Applications. Progress in Probability, vol. 65, pp. 331–346. Birkhäuser, Basel (2011)

    Chapter  Google Scholar 

  11. Fukasawa, M.: Conservative delta hedging under transaction costs. In: Takahashi, A., Muromachi, Y., Nakaoka, H. (eds.) Recent Advances in Financial Engineering, pp. 55–72. World Scientific, Singapore (2012)

    Google Scholar 

  12. Geiss, C., Geiss, S.: On an approximation problem for stochastic integrals where random time nets do not help. Stoch. Process. Appl. 116, 407–422 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Geiss, S., Toivola, A.: Weak convergence of error processes in discretizations of stochastic integrals and Besov spaces. Bernoulli 15, 925–954 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Genon-Catalot, V., Jacod, J.: Estimation of the diffusion coefficient for diffusion processes: random sampling. Scand. J. Stat. 21, 193–221 (1994)

    MATH  MathSciNet  Google Scholar 

  15. Gobet, E., Landon, N.: Almost sure optimal hedging strategy (2012). Preprint, available online at HAL, hal-00657153

  16. Gobet, E., Temam, E.: Discrete time hedging errors for options with irregular payoffs. Finance Stoch. 5, 357–367 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hayashi, T., Mykland, P.A.: Evaluating hedging errors: an asymptotic approach. Math. Finance 15, 309–343 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  19. Karandikar, R.L.: On pathwise stochastic integration. Stoch. Process. Appl. 57, 11–18 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1991)

    MATH  Google Scholar 

  21. Leland, H.E.: Option pricing and replication with transaction costs. J. Finance 40, 1283–1301 (1985)

    Article  Google Scholar 

  22. Milstein, G.N., Tretyakov, M.V.: Simulation of a space-time bounded diffusion. Ann. Appl. Probab. 9, 732–779 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rootzén, H.: Limit distributions for the error in approximations of stochastic integrals. Ann. Probab. 8, 241–251 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rosenbaum, M., Tankov, P.: Asymptotically optimal discretization of hedging strategies with jumps. Ann. Appl. Probab. (2013, to appear). http://www.imstat.org/aap/future_papers.html

  25. Tankov, P., Voltchkova, E.: Asymptotic analysis of hedging errors in models with jumps. Stoch. Process. Appl. 119, 2004–2027 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Whalley, A.E., Wilmott, P.: An asymptotic analysis of an option hedging model for option pricing with transaction costs. Math. Finance 7, 307–324 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Whalley, A.E., Wilmott, P.: Optimal hedging of options with small but arbitrary transaction cost structure. Eur. J. Appl. Math. 10, 117–139 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees for their careful reading and helpful comments. This work is supported by Japan Society for the Promotion of Science, KAKENHI Grant Numbers 24684006, 24300107 and 22243021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Fukasawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukasawa, M. Efficient discretization of stochastic integrals. Finance Stoch 18, 175–208 (2014). https://doi.org/10.1007/s00780-013-0215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-013-0215-6

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation