Skip to main content
Log in

Comonotone Pareto optimal allocations for law invariant robust utilities on L 1

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We prove the existence of comonotone Pareto optimal allocations satisfying utility constraints when decision makers have probabilistic sophisticated variational preferences and thus representing criteria in the class of law invariant robust utilities. The total endowment is only required to be integrable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Probabilistic sophisticated preferences were introduced by Machina and Schmeidler [22], and further studied by Strzalecki [24] for the case of variational preferences.

  2. Since \(\mathcal {U}\) is defined via the law invariant penalization α, it is law invariant. This follows as in [12], Theorem 4.54. Conversely, the dual function in the convex duality sense of a law invariant concave function \(\mathcal {U}:L^{1}\to \mathbb {R}\cup\{-\infty\}\), which in particular can serve as a penalization α in the sense of (2.1), is always law invariant; again see [12], Theorem 4.54.

  3. c i =∞ is understood as the restriction \(\mathcal {U}_{i}(X_{i})\geq \mathcal {U}_{i}(W_{i})-\infty:=-\infty\) being redundant.

  4. See Example 5.4.

  5. The individual constraints may for instance imply that the closed set \(\mathbb {A}_{c}(W)\) is essentially bounded. Let us think of it as compact. Then (3.3) will allow a solution for any positive weights, whereas the optimization (3.2) over all allocations only works for certain weights.

  6. Note that λ j =0 implies that the decision maker j is not considered in the social welfare maximization problem (3.3).

  7. When \(d_{L}^{i}=d_{H}^{i}=d^{i}\) and s i =−∞ (i.e., \(\operatorname {dom}\,u_{i}=\mathbb{R}\)), then the corresponding robust utility \(\mathcal{U}_{i}\) is cash additive in the sense that \(\mathcal{U}_{i}(X+m)=\mathcal{U}_{i}(X)+d^{i} m\) for all \(m\in \mathbb {R}\) and XL 1 and thus corresponds to a convex risk measure (if d i=1 and when multiplied by −1).

  8. Here \(\frac{0}{\infty}:=0\) and \(\frac{\infty}{0}:=\infty\).

  9. Note that if u is a concave function, then it is always dominated by xu′(y)(xy)+u(y).

References

  1. Acciaio, B.: Optimal risk sharing with non-monotone monetary functionals. Finance Stoch. 11, 267–289 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arrow, K.J.: Uncertainty and the welfare economics of medical care. Am. Econ. Rev. 5, 941–973 (1963)

    Google Scholar 

  3. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barrieu, P., El Karoui, N.: Inf-convolution of risk measures and optimal risk transfer. Finance Stoch. 9, 269–298 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borch, K.: Equilibrium in a reinsurance market. Econometrica 30, 424–444 (1962)

    Article  MATH  Google Scholar 

  6. Dana, R.-A.: A representation result for concave Schur concave functions. Math. Finance 15, 613–634 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dana, R.-A.: Comonotonicity, efficient risk-sharing and equilibria in markets with short selling for concave law-invariant utilities. J. Math. Econ. 47, 328–335 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. El Karoui, N., Ravanelli, C.: Cash sub-additive risk measures under interest rate ambiguity. Math. Finance 19, 561–590 (2010)

    Article  MathSciNet  Google Scholar 

  9. Filipović, D., Svindland, G.: Optimal capital and risk allocations for law- and cash-invariant convex functions. Finance Stoch. 12, 423–439 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Filipović, D., Svindland, G.: The canonical model space for law-invariant convex risk measures is L 1. Math. Finance 22, 585–589 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6, 429–447 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 2nd edn. De Gruyter Studies in Mathematics, vol. 27 (2004)

    Book  Google Scholar 

  13. Föllmer, H., Schied, A., Weber, S.: Robust preferences and robust portfolio choice. In: Ciarlet, P., Bensoussan, A., Zhang, Q. (eds.) Mathematical Modeling and Numerical Methods in Finance. Handbook of Numerical Analysis, vol. 15, pp. 29–88. Wiley, New York (2009)

    Google Scholar 

  14. Frittelli, M., Gianin, E.R.: Law-invariant convex risk measures. Adv. Math. Econ. 7, 33–46 (2005)

    Article  Google Scholar 

  15. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math. Econ. 18, 141–153 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hansen, L.P., Sargent, T.J.: Robust control and model uncertainty. Am. Econ. Rev. 91, 60–66 (2001)

    Article  Google Scholar 

  17. Jouini, E., Schachermayer, W., Touzi, N.: Optimal risk sharing for law invariant monetary utility functions. Math. Finance 18, 269–292 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kiesel, S., Rüschendorf, L.: Characterization of optimal risk allocations for convex risk functionals. Stat. Decis. 26, 303–319 (2008)

    MATH  Google Scholar 

  19. Landsberger, M., Meilijson, I.: Comonotone allocations, Bickel–Lehmann dispersion and the Arrow–Pratt measure of risk aversion. Ann. Oper. Res. 52, 97–106 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ludkovski, M., Rüschendorf, L.: On comonotonicity of Pareto optimal risk sharing. Stat. Probab. Lett. 78, 1181–1188 (2008)

    Article  MATH  Google Scholar 

  21. Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74, 1447–1498 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Machina, M.J., Schmeidler, D.: A more robust definition of subjective probability. Econometrica 60, 745–780 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rigotti, L., Shannon, C., Strzalecki, T.: Subjective beliefs and ex ante trade. Econometrica 76, 1167–1190 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Strzalecki, T.: Probabilistic sophistication and variational preferences. J. Econ. Theory 146, 2117–2125 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Svindland, G.: Continuity properties of law-invariant (quasi-)convex risk functions. Math. Financ. Econ. 3, 39–43 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour, 2nd edn. Princeton University Press, Princeton (1947)

    Google Scholar 

  27. Wilson, R.: The theory of syndicates. Econometrica 36, 119–132 (1968)

    Article  Google Scholar 

  28. Yaari, M.E.: The dual theory of choice under risk. Econometrica 55, 95–115 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank an anonymous referee and the Associate Editor for very helpful remarks which significantly improved the paper. C. Ravanelli gratefully acknowledges financial support from NCCR FINRISK (Swiss National Science Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Svindland.

Appendix: Proofs of Theorems 3.8 and 3.9

Appendix: Proofs of Theorems 3.8 and 3.9

In the proofs of Theorems 3.8 and 3.9, we apply the following facts about law invariant monetary utilities which apart from the sign are convex risk measures. We omit a proof since most arguments are standard and can for instance be found in [12].

Lemma A.1

Let

$$\mathcal {U}(X)=\inf_{\mathbb {Q}\in \mathcal {Q}}\left(\mathbb {E}_\mathbb {Q}[u(X)]+\alpha(\mathbb {Q})\right ), \quad X\in L^1, $$

be a law invariant robust utility as (2.1). Define

$$ U(X):= \inf_{\mathbb {Q}\in \mathcal {Q}}\left(\mathbb {E}_\mathbb {Q}\left[X\right]+\alpha(\mathbb {Q})\right), \quad X\in L^1, $$

so that \(\mathcal {U}(\cdot)=U(u(\cdot))\). Then U is a proper, law invariant, \(\succeq _{\rm ssd}\)-monotone, upper semi-continuous, monotone, cash additive (U(X+m)=U(X)+m for all \(m\in \mathbb {R}\)), and concave function. Moreover, we have that

$$ U(X)\leq \mathbb {E}[X]+U(0)\quad\textit{for\ all}\ X\in L^1. $$
(A.1)

Note that (A.1) follows from \(E[X]\succeq _{\rm ssd} X\) and the cash additivity of U. The next lemma is an Arzelà–Ascoli type argument which will also play a crucial role in the proofs of Theorems 3.8 and 3.9. For a proof see e.g. [9].

Lemma A.2

Let \(f_{n}:\mathbb {R}\to \mathbb {R}\), \(n\in \mathbb {N}\), be a sequence of increasing 1-Lipschitz-continuous functions such that f n (0)∈[−K,K] for all \(n\in \mathbb {N}\), where K≥0 is a constant. Then there are a subsequence \((f_{n_{k}})_{k\in \mathbb {N}}\) of \((f_{n})_{n\in \mathbb {N}}\) and an increasing 1-Lipschitz-continuous function \(f:\mathbb {R}\to \mathbb {R}\) such that \(\lim_{k\to\infty}f_{n_{k}}(x)=f(x)\) for all \(x\in \mathbb {R}\).

Let \(\operatorname {CFN}:= \{(f_{i})_{i=1}^{n}\in \operatorname {CF}\mid f_{1}(0)=\cdots=f_{n}(0)=0 \}\). Note that

$$ \operatorname {CF} = \bigg\{(f_i+a_i)_{i=1}^n\Bigg| (f_i)_{i=1}^n\in \operatorname {CFN}, a_i\in \mathbb {R}, \sum_{i=1}^n a_i=0\bigg\}. $$

According to Proposition 3.6, there exists a solution to (3.3) for some given weights (λ 1,…,λ n ) if and only if there is a solution to

$$\begin{aligned} &\mbox{maximize}\quad \sum_{i=1}^n \lambda_i\mathcal {U}_i\big(f_i(W)+a_i\big) \\ &\mbox{subject to}\quad (f_i)_{i=1}^n\in \operatorname {CFN},\ a_i\in \mathbb {R}, \\ &\qquad \quad \qquad\sum_{i=1}^n a_i=0,\ \big(f_i(W)+a_i\big)_{i=1}^n\in \mathbb {A}_c(W). \end{aligned}$$
(A.2)

Proof of Theorem 3.9

We prove the existence of a solution to (A.2). Fix a set of weights (λ 1,…,λ n ) satisfying the conditions (3.4). First of all, we observe that if for some jM the right derivative \(u'_{j}\) does not attain the values \(d_{H}^{j}\) and/or \(d_{L}^{j}\), we can always find nonnegative numbers \(\widetilde{d}_{H}^{j}\) and/or \(\widetilde{d}_{L}^{j}\) in the image of \(u'_{j}\) such that for the already given set of weights (λ 1,…,λ n ), the conditions (3.4) still hold true if we replace the \(d_{H}^{j}\) and/or \(d_{L}^{j}\) by \(\widetilde{d}_{H}^{j}\) and/or \(\widetilde{d}_{H}^{j}\). We assume that all \(d_{H}^{j}\) and/or \(d_{L}^{j}\) which are not attained by the corresponding \(u_{j}'\) are replaced as in the described manner, and for the sake of simplicity we keep the notation \(d_{H}^{j}\) and \(d_{L}^{j}\). By concavity of the u i , there is a constant k such that for all i=1,…,n, the affine functions \(\mathbb {R}\ni x\mapsto d_{L}^{i} x+ k\) and \(\mathbb {R}\ni x\mapsto d_{H}^{i} x+ k\) both dominate u i .Footnote 9 Using this, we want to show that

$$\begin{aligned} P :=\sup\bigg\{ &\sum_{i=1}^n \lambda_i\mathcal {U}_i \big (f_i(W)+a_i\big )\Bigg| (f_i)_{i=1}^n\in \operatorname {CFN},\, a_i\in \mathbb {R}, \\ & \sum_{i=1}^n a_i=0, \big(f_i(W)+a_i\big)_{i=1}^n\in \mathbb {A}_c(W) \bigg \} <\infty, \end{aligned}$$
(A.3)

and that this supremum is realized over a bounded set of comonotone allocations where the bound is given by W. More precisely, we shall prove that there exists some constant K>0 depending on W such that

$$\begin{aligned} P = \sup\bigg\{& \sum_{i=1}^n \lambda_i\mathcal {U}_i \big (f_i(W)+a_i\big )\Bigg| (f_i)_{i=1}^n\in \operatorname {CFN},\, a_i\in[-K,K], \\ & \sum_{i=1}^n a_i=0,\big(f_i(W)+a_i \big)_{i=1}^n\in \mathbb {A}_c(W){\bigg \}}. \end{aligned}$$
(A.4)

To this end, we define the functions

$$U_i(X):=\inf_{\mathbb {Q}\in \mathcal {Q}_i}\left(\mathbb {E}_\mathbb {Q}[X]+\alpha_i(\mathbb {Q})\right ), \quad X\in L^1,\ i=1,\ldots,n, $$

as in Lemma A.1. Consider \((f_{i})_{i=1}^{n}\in \operatorname {CFN}\) and \(a_{i}\in \mathbb {R}\) such that \(\sum _{i=1}^{n}a_{i}=0\) and \((f_{i}(W)+a_{i})_{i=1}^{n}\in \mathbb {A}_{c}(W)\). Let I:={i∈{1,…,n}∣a i <0} and J:={1,…,n}∖I. By applying monotonicity, cash additivity and finally property (A.1) of the U i (see Lemma A.1), we obtain

$$\begin{aligned} &\sum_{i=1}^n\lambda_i\mathcal {U}_i \big(f_i(W)+a_i\big) \\ &\quad = \sum_{i=1}^n \lambda_i U_i\Big(u_i\big(f_i(W)+a_i\big)\Big ) \\ &\quad \leq\sum_{i\in I\cap M}\lambda_i U_i\Big(d_H^i\big (f_i(W)+a_i\big )+k\Big) \\ &\qquad{}+\sum_{j\in J\cap M}\lambda_j U_j\Big(d_L^j\big (f_j(W)+a_j\big )+k\Big) + \sum_{\ell\in N}\lambda_\ell U_\ell\Big(d^\ell_H\big(f_\ell (W)+a_\ell \big)+k\Big) \\ &\quad \leq k\sum_{i=1}^n\lambda_i+ \sum_{i\in I\cap M}\lambda_i U_i\big (d_H^if_i(W)\big) + \sum_{j\in J\cap M}\lambda_j U_j\big(d_L^j f_j(W)\big) \\ &\qquad{}+ \sum_{\ell\in N}\lambda_\ell U_\ell\big(d^\ell_H f_\ell (W)\big ) \\ & \qquad{}+\left(\min_{i\in I\cap M}\lambda_id_H^i\right)\sum_{i\in I\cap M}a_i+\left(\max_{j\in J\cap M}\lambda_jd_L^j\right)\sum_{j\in J\cap M}a_j + \delta\sum_{\ell\in N}a_\ell \\ &\quad \leq k\sum_{i=1}^n\lambda_i+ \mathbb {E}\bigl[W^+\bigr] \sum_{i=1}^n \lambda_i d_H^i + \sum_{i=1}^n \lambda_i U_i(0) \\ &\qquad{}+\left(\min_{i\in I\cap M}\lambda_id_H^i\right)\sum_{i\in I\cap M}a_i+\left(\max_{j\in J\cap M}\lambda_j d_L^j\right)\sum_{j\in J\cap M}a_j +\delta\sum_{\ell\in N}a_\ell. \end{aligned}$$
(A.5)

Suppose that N=∅; then we further estimate

$$ \sum_{i=1}^n \lambda_i d_H^i + k\sum_{i=1}^n\lambda_i+\sum_{i=1}^n \lambda_i U_i(0) -\left(\min _{i\in I}\lambda_id_H^i-\max_{j\in J}\lambda_j d_L^j\right)a, $$
(A.6)

where a:=∑ iJ a i  (≥0). If N≠∅ and ∑ N a <0, then we estimate

$$ (A.5)\leq \mathbb {E}\bigl[W^+\bigr] \sum_{i=1}^n \lambda_i d_H^i + k\sum_{i=1}^n\lambda_i+\sum_{i=1}^n \lambda_i U_i(0) -\left(\delta -\max _{j\in J\cap M}\lambda_jd_L^j\right)\tilde{a} $$
(A.7)

for \(\tilde{a}:=\sum_{i\in J\cap M} a_{i}\, (\geq0)\), using (3.4). And similarly, if N≠∅ and ∑ N a ≥0, then we estimate

$$ (A.5)\leq \mathbb {E}\bigl[W^+\bigr] \sum_{i=1}^n \lambda_i d_H^i + k\sum_{i=1}^n\lambda_i+\sum_{i=1}^n \lambda_i U_i(0)- \left(\min _{i\in I\cap M}\lambda_id_H^i-\delta\right)\hat{a} $$
(A.8)

for \(\hat{a}:=\sum_{i\in J\cup N} a_{i}\, (\geq0)\). Consequently we infer that

$$P\leq \mathbb {E}\bigl[W^+\bigr] \sum_{i=1}^n \lambda_i d_H^i + k\sum_{i=1}^n\lambda_i +\sum_{i=1}^n \lambda_i U_i(0) <\infty. $$

Choose any allocation \((X_{1},\ldots,X_{n})\in \mathbb {A}_{c}(W)\) (Assumption 3.1). Then we have that \(P\geq\sum _{i=1}^{n}\lambda_{i}\mathcal {U}_{i}(X_{i})=:\widetilde{k}\). Letting

$$A:= \min_{i=1,\ldots,n}\lambda_id_H^i-\max_{j=1,\ldots,n}\lambda_jd_L^j $$

if N=∅, or

$$A:=\min\Big\{\delta-\max_{j\in M}\lambda_jd_L^j, \min _{i\in M}\lambda_id_H^i-\delta \Big\} $$

if N≠∅, we infer from (A.6)–(A.8) that the supremum in (A.3) is realized over allocations such that

$$|a_i|\leq\frac{|\widetilde{k}| +\mathbb {E}[W^+] \sum_{i=1}^n \lambda_i d_H^i + k\sum_{i=1}^n\lambda_i+|\sum_{i=1}^n \lambda_i U_i(0)|}{A}=:\overline{K} $$

for all iM, and \(|\sum_{i\in N}a_{i}|\leq\overline{K}\), too. Note that A>0 due to the conditions (3.4) on the weights λ i . In the following we argue that in the case |N|>1, we may also assume that the a i belonging to iN are bounded due to the insensitivity of the cash additive \(\mathcal {U}_{i}\), iN, to constant re-sharings of 0 among the decision makers in N. To this end, note that the choice of the λ i and the requirement s i =−∞ for iN implies

$$\begin{aligned} \sum_{i\in N}\lambda_i\mathcal {U}_i \big(f_i(W)+a_i+m_i\big) & = \sum _{i\in N}\lambda_i\mathcal {U}_i \big(f_i(W)+a_i\big) + \delta\sum_{i\in N} m_i \\ & = \sum_{i\in N}\lambda_i\mathcal {U}_i \big (f_i(W)+a_i\big ), \end{aligned}$$
(A.9)

whenever \(m_{i}\in \mathbb {R}\) such that ∑ iN m i =0. Hence, adding such m i to the endowments of the decision makers in N does not affect the contribution of the allocation to P. This immediately implies that we may assume \(|a_{i}|\leq\overline{K}\) for all iN if c i =∞ for all iN, because in that case we may choose m 1=∑ iN a i a 1 and m i =−a i for all i≠1 in (A.9), and the altered allocation satisfies the bound (meaning that \(|m_{1}+a_{1}|=|\sum_{i\in N}a_{i}|\leq \overline{K}\), see above). If the set N b N of indices iN such that \(c_{i}\in \mathbb {R}\) is not empty, we also need to consider cash amounts that might be needed to make the endowment f i (W)+a i acceptable. This is the point where the assumption \(\mathcal {U}_{i}(-W^{-})>-\infty\) for all iN b enters (whenever |N|>1). Using the cash additivity \(\mathcal {U}_{i}(Y+z)=\mathcal {U}_{i}(Y)+d_{H}^{i}z\), \(z\in \mathbb {R}\), and monotonicity of \(\mathcal {U}_{i}\), we obtain that f i (W)+z is acceptable for decision maker iN b whenever

$$z\geq\frac{\mathcal {U}_i(W_i)-\mathcal {U}_i(-W^-)-c_i}{d_H^i}. $$

Moreover, acceptability of f i (W)+a i implies (again using cash additivity and monotonicity of \(\mathcal {U}_{i}\)) for all iN b that

$$a_i\geq\frac{\mathcal {U}_i(W_i)-c_i-\mathcal {U}_i(f_i(W_i))}{d_H^i}\geq\frac {\mathcal {U}_i(W_i)-c_i-\mathcal {U}_i(0)}{d_H^i}-\mathbb {E}[W^+] , $$

where we have used that \(\mathcal {U}_{i}(f_{i}(W_{i}))\leq \mathcal {U}_{i}(W^{+})\leq \mathbb {E}[d_{H}^{i} W^{+}]+\mathcal {U}_{i}(0)\) according to (A.1). Therefore we know that there exists a constant \(\widehat{K}>0\) such that the a i , iN b , are bounded from below by \(-\widehat{K}\) and such that the endowments f(W i )+a i +m i stay acceptable for \(m_{i}=-[(a_{i}-\widehat{K})\vee0]\), iN b . If N b =N, then choosing some jN b and letting \(m_{i}=-[(a_{i}-\widehat{K})\vee0]\) for iN b ∖{j} and m j =−∑ iN∖{j} m i , we obtain that ∑ iN m i =0, \(|a_{i}+m_{i}|\leq\widehat{K}\) for all iN b ∖{j}, and

$$|a_j+m_j|\leq\bigg|\sum_{i\in N} a_i\bigg|+\bigg|\sum_{i\in N_b\setminus\{j\}} a_i+m_i\bigg| \leq\overline{K}+|N_b|\widehat{K}=:K. $$

Moreover, because a j a j +m j , we get that also f(W j )+a j +m j is acceptable, i.e., \(\mathcal {U}_{j}(f(W_{j})+a_{j}+m_{j})\geq \mathcal {U}_{j}(W_{j})-c_{j}\). If |N u |>1 where N u :=NN b , then we choose some jN u and let \(m_{i}=-[(a_{i}-\widehat{K})\vee0]\) for all iN b and m i =−a i for all iN u ∖{j}, whereas m j =−∑ iN∖{j} m i . Again, ∑ iN m i =0, and a i +m i =0 for all iN u ∖{j}, \(|a_{i}+m_{i}|\leq\widehat{K}\) for all iN b , and

$$|a_j+m_j|\leq\bigg|\sum_{i\in N} a_i\bigg|+\bigg|\sum_{i\in N_b} a_i+m_i\bigg| \leq\overline{K}+|N_b|\widehat{K}=:K. $$

Hence, (A.3) and (A.4) are proved. By virtue of (A.4), we may choose a sequence \(((f^{p}_{i})_{i=1}^{n} )_{p\in \mathbb {N}}\subset \operatorname {CF}\) with \(f^{p}_{i}(0)\in[-K,K]\) for all i=1,…,n and \(p\in \mathbb {N}\) such that \((f^{p}_{i}(W))_{i=1}^{n}\in \mathbb {A}_{c}(W)\) for all \(p\in \mathbb {N}\) and

$$P=\lim_{p\to\infty}\sum_{i=1}^n\lambda_i \mathcal {U}_i\big (f^p_i(W)\big). $$

According to Lemma A.2, there exists a subsequence, which we for the sake of simplicity also denote by \(((f^{p}_{i})_{i=1}^{n})\), which converges pointwise to some \((f_{i})_{i=1}^{n}\in \operatorname {CF}\). As \(|f_{i}^{p}(W)|\leq|W|+K\) for all i=1,…,n and \(p\in \mathbb {N}\), we may apply the dominated convergence theorem to obtain f i (W)∈L 1 and \(\lim_{p\to\infty} \mathbb {E}[|f_{i}(W)-f_{i}^{p}(W)|]= 0\) for all i=1,…,n. By upper semi-continuity of the \(\mathcal{U}_{i}\) (Lemma 2.3), we have

$$\mathcal {U}_i(W_i)-c_i\leq\limsup_{p\to\infty} \mathcal {U}_i \big (f^p_i(W)\big )\leq \mathcal {U}_i\big(f_i(W)\big) $$

and

$$P= \lim_{p\to\infty}\sum_{i=1}^n\lambda_i \mathcal {U}_i \big(f^p_i(W)\big) \leq\sum_{i=1}^n\lambda_i \limsup_{p\to\infty} \mathcal {U}_i \big(f^p_i(W)\big) \leq\sum_{i=1}^n\lambda_i \mathcal {U}_i \big(f_i(W)\big). $$

Hence, we infer that \((f_{i}(W))_{i=1}^{n}\in \mathbb {A}_{c}(W)\) (since P>−∞) and

$$P=\sum_{i=1}^n\lambda_i \mathcal {U}_i\big(f_i(W)\big). $$

For the last part of (ii), suppose that |N|=n and let (X 1,…,X n ) be a solution to (3.3) for the given weights. If we have \(m_{i}\in \mathbb {R}\) such that \(\sum_{i=1}^{n} m_{i}=0\), then the same computation as in (A.9) yields \(\sum_{i=1}^{n}\lambda _{i}\mathcal {U}_{i}(X_{i}+m_{i})=\sum_{i=1}^{n}\lambda_{i}\mathcal {U}_{i}(X_{i})\). □

Proof of Theorem 3.8

Recall (A.2) and let \((f_{i})_{i=1}^{n}\in \operatorname {CFN}\), \(a_{i}\in \mathbb {R}\) with \(\sum_{i=1}^{n}a_{i}=0\) such that \((f_{i}(W)+a_{i})_{i=1}^{n}\in \mathbb {A}_{c}(W)\). Since in particular \(\mathcal {U}_{i}(f_{i}(W)+a_{i})>-\infty\), we must have that f i (W)+a i s i for all i=1,…,n. Let \(\widetilde{K}:=\sum_{i=1}^{n}|s_{i}|\). Then

$$-\bigl(|W|+\widetilde{K}\bigr)\leq f_i(W)+a_i= W- \bigg(\sum_{j\neq i}f_j(W)+a_j\bigg)\leq|W|+\widetilde{K}. $$

Hence, we deduce that (A.4) holds with \(K:= 2\operatorname {essinf} |W|+\widetilde{K}\). The rest of the proof now follows the lines of the proof of Theorem 3.9. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravanelli, C., Svindland, G. Comonotone Pareto optimal allocations for law invariant robust utilities on L 1 . Finance Stoch 18, 249–269 (2014). https://doi.org/10.1007/s00780-013-0214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-013-0214-7

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation