Advertisement

Finance and Stochastics

, Volume 17, Issue 3, pp 615–640 | Cite as

A reading guide for last passage times with financial applications in view

  • Ashkan Nikeghbali
  • Eckhard Platen
Article

Abstract

In this survey on last passage times, we propose a new viewpoint which provides a unified approach to many different results which appear in the mathematical finance literature and in the theory of stochastic processes. In particular, we are able to improve the assumptions under which some well-known results are usually stated. Moreover we give some new and detailed calculations for the computation of the distribution of some large classes of last passage times. We have kept in this survey only the aspects of the theory which we expect potentially to be relevant for financial applications.

Keywords

Last passage times Class Σ Running maximum 

Mathematics Subject Classification (2000)

60G17 62P05 

JEL Classification

C02 C10 G10 

References

  1. 1.
    Azéma, J.: Quelques applications de la théorie générale des processus, I. Invent. Math. 18, 293–336 (1972) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Azéma, J., Meyer, P.-A., Yor, M.: Martingales relatives. In: Séminaire de Probabilités, XXVI. Lecture Notes in Math., vol. 1526, pp. 307–321. Springer, Berlin (1992) CrossRefGoogle Scholar
  3. 3.
    Azéma, J., Yor, M.: Sur les zéros des martingales continues. In: Séminaire de Probabilités, XXVI. Lecture Notes in Math., vol. 1526, pp. 248–306. Springer, Berlin (1992) CrossRefGoogle Scholar
  4. 4.
    Barlow, M.T.: Study of a filtration expanded to include an honest time. Z. Wahrscheinlichkeitstheor. Verw. Geb. 44, 307–324 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bichteler, K.: Stochastic Integration with Jumps. Cambridge University Press, Cambridge (2002) zbMATHCrossRefGoogle Scholar
  6. 6.
    Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae, 2nd edn. Birkhäuser, Basel (2002) zbMATHCrossRefGoogle Scholar
  7. 7.
    Cheridito, P., Nikeghbali, A., Platen, E.: Processes of the class sigma, last zero and draw-down processes. SIAM J. Financ. Math. 3, 280–303 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chung, K.L.: Probabilistic approach in potential theory. Ann. Inst. Fourier 23, 313–322 (1973) zbMATHCrossRefGoogle Scholar
  9. 9.
    Coculescu, D., Nikeghbali, A.: Hazard processes and martingales hazard processes. Math. Finance 22, 519–537 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cox, J.C.: Notes on option pricing I: Constant elasticity of variance diffusions. Stanford University, unpublished (1975) Google Scholar
  11. 11.
    Dellacherie, C., Maisonneuve, B., Meyer, P.-A.: Probabilités et Potentiel, Chapitres xvii–xxiv: Processus de Markov (fin). Compléments de Calcul Stochastique. Hermann, Paris (1992) Google Scholar
  12. 12.
    Duffie, D., Kan, R.: Multi-factor term structure models. Philos. Trans. R. Soc. Lond. Ser. A 347, 577–586 (1994) zbMATHCrossRefGoogle Scholar
  13. 13.
    Elliott, R.J., Jeanblanc, M., Yor, M.: On models of default risk. Math. Finance 10, 179–196 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Imkeller, P.: Random times at which insiders can have free lunches. Stoch. Stoch. Rep. 74, 465–487 (2002) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer, Berlin (2009) zbMATHCrossRefGoogle Scholar
  16. 16.
    Jeulin, T.: Semi-martingales et Grossissements d’une Filtration. Lecture Notes in Math., vol. 833. Springer, Berlin (1980) Google Scholar
  17. 17.
    Kardaras, C., Kreher, D., Nikeghbali, A.: Strict local martigales and bubbles. Preprint (2011). http://arxiv.org/pdf/1108.4177.pdf
  18. 18.
    Kent, J.T.: Some probabilistic properties of Bessel functions. Ann. Probab. 6, 760–770 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Lévy, P.: Sur un problème de Marcinkiewicz. C. R. Acad. Sci. 208, 319–321 (1939). Errata p. 776 Google Scholar
  20. 20.
    Li, L., Rutkowski, M.: Constructing random times through multiplicative systems. Preprint (2011). http://www.maths.usyd.edu.au/u/libol/Publications/Li_Rutkowski_SPA_Nov_13.pdf
  21. 21.
    Madan, D., Roynette, B., Yor, M.: From Black–Scholes formula to local times and last passage times for certain submartingales. Preprint (2008). http://hal.archives-ouvertes.fr/docs/00/26/18/68/PDF/2008-14.pdf
  22. 22.
    Madan, D., Roynette, B., Yor, M.: Option prices as probabilities. Finance Res. Lett. 26, 79–87 (2008) CrossRefGoogle Scholar
  23. 23.
    Mansuy, R., Yor, M.: Random Times and Enlargements of Filtrations in a Brownian Setting. Lecture Notes in Math., vol. 1873. Springer, Berlin (2006) zbMATHGoogle Scholar
  24. 24.
    Najnudel, J., Nikeghbali, A.: A new kind of augmentation of filtrations. ESAIM Probab. Stat. 15, 39–57 (2011) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Najnudel, J., Nikeghbali, A.: On some universal σ-finite measures and some extensions of Doob’s optional stopping theorem. Stoch. Process. Appl. 122, 1582–1600 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Najnudel, J., Nikeghbali, A.: On some properties of a universal σ-finite measure associated with a remarkable class of submartingales. Publ. Res. Inst. Math. Sci. 47, 911–936 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Najnudel, J., Roynette, B., Yor, M.: A Global View of Brownian Penalisations. MSJ Memoirs, vol. 19. Mathematical Society of Japan, Tokyo (2009) zbMATHGoogle Scholar
  28. 28.
    Nikeghbali, A.: A class of remarkable submartingales. Stoch. Process. Appl. 116, 917–938 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Nikeghbali, A.: Some random times and martingales associated with BES0(δ) processes (0<δ<2). ALEA Lat. Am. J. Probab. Math. Stat. 2, 67–89 (2006) MathSciNetzbMATHGoogle Scholar
  30. 30.
    Nikeghbali, A.: Enlargements of filtrations and path decompositions at non stopping times. Probab. Theory Relat. Fields 136, 524–540 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Nikeghbali, A.: An essay on the general theory of stochastic processes. Probab. Surv. 3, 345–412 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Nikeghbali, A., Yor, M.: Doob’s maximal identity, multiplicative decompositions and enlargements of filtrations. Ill. J. Math. 50, 791–814 (2006) MathSciNetzbMATHGoogle Scholar
  33. 33.
    Parthasarathy, K.-R.: Probability Measures on Metric Spaces. Academic Press, New York (1967) zbMATHGoogle Scholar
  34. 34.
    Pitman, J., Yor, M.: Bessel processes and infinitely divisible laws. In: Williams, D. (ed.) Stochastic Integrals. Lecture Notes in Math., vol. 851, pp. 285–370. Springer, Berlin (1981) CrossRefGoogle Scholar
  35. 35.
    Pitman, J., Yor, M.: Laplace transforms related to excursions of a one dimensional diffusion. Bernoulli 5, 249–255 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Platen, E.: A minimal financial market model. In: Kohlmann, M., Tang, S. (eds.) Mathematical Finance. Trends in Mathematics, pp. 293–301. Birkhäuser, Basel (2001) CrossRefGoogle Scholar
  37. 37.
    Platen, E.: Arbitrage in continuous complete markets. Adv. Appl. Probab. 34, 540–558 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Platen, E., Heath, D.: A Benchmark Approach to Quantitative Finance. Springer, Berlin (2006) zbMATHCrossRefGoogle Scholar
  39. 39.
    Profeta, C., Roynette, B., Yor, M.: Option Prices as Probabilities. A New Look at Generalized Black–Scholes Formulae. Springer, Berlin (2010) zbMATHCrossRefGoogle Scholar
  40. 40.
    Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999) zbMATHCrossRefGoogle Scholar
  41. 41.
    Yen, J.-Y., Yor, M.: Call option prices based on Bessel processes. Methodol. Comput. Appl. Probab. 13, 329–348 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Yor, M.: Grossissements d’une filtration et semi-martingales: théorèmes généraux. In: Lecture Notes in Math., vol. 649, pp. 61–69 (1978) Google Scholar
  43. 43.
    Yor, M.: Les inégalités de sous-martingales, comme conséquences de la relation de domination. Stochastics 3, 1–15 (1979) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZürichSwitzerland
  2. 2.Department of Banking and FinanceUniversität ZürichZürichSwitzerland
  3. 3.Finance Discipline Group and School of Mathematical SciencesUniversity of Technology SydneyBroadwayAustralia

Personalised recommendations