Abstract
In this paper, we introduce a new class of models for the time evolution of the prices of call options of all strikes and maturities. We capture the information contained in the option prices in the density of some time-inhomogeneous Lévy measure (an alternative to the implied volatility surface), and we set this static code-book in motion by means of stochastic dynamics of Itô’s type in a function space, creating what we call a tangent Lévy model. We then provide the consistency conditions, namely, we show that the call prices produced by a given dynamic code-book (dynamic Lévy density) coincide with the conditional expectations of the respective payoffs if and only if certain restrictions on the dynamics of the code-book are satisfied (including a drift condition à la HJM). We then provide an existence result, which allows us to construct a large class of tangent Lévy models, and describe a specific example for the sake of illustration.
Similar content being viewed by others
References
Bentata, A., Cont, R.: Mimicking the marginal distributions of a semimartingale. Technical report, 2009, http://arxiv.org/abs/0910.3992v2
Buehler, H.: Expensive martingales. Quant. Finance 6, 207–218 (2006)
Carmona, R., Nadtochiy, S.: An infinite dimensional stochastic analysis approach to local volatility dynamic models. Commun. Stoch. Anal. 2, 109–123 (2008)
Carmona, R., Nadtochiy, S.: Local volatility dynamic models. Finance Stoch. 13, 1–48 (2009)
Carmona, R., Tehranchi, M.: Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective. Springer, Berlin (2006)
Carr, P., Geman, H., Madan, D., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)
Carr, P., Geman, H., Madan, D., Yor, M.: From local volatility to local Lévy models. Quant. Finance 4, 581–588 (2005)
Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 2, 61–73 (1998)
Cont, R., da Fonseca, I., Durrleman, V.: Stochastic models of implied volatility surfaces. Econ. Notes 31, 361–377 (2002)
Cont, R., da Fonseca, J.: Dynamics of implied volatility surfaces. Quant. Finance 2, 45–60 (2002)
Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC, London/Boca Raton (2004)
Cont, R., Voltchkova, E.: Integro-differential equations for option prices in exponential Lévy models. Finance Stoch. 9, 299–325 (2005)
Cousot, L.: Conditions on option prices for absence of arbitrage and exact calibration. J. Bank. Finance 31, 3377–3397 (2007)
Davis, M.H.A., Hobson, D.G.: The range of traded option prices. Math. Finance 17, 1–14 (2007)
Derman, E., Kani, I.: Stochastic implied trees: arbitrage pricing with stochastic term and strike structure of volatility. Int. J. Theor. Appl. Finance 1, 61–110 (1998)
Diestel, J., Uhl, J.: Vector Measures. American Mathematical Society, Providence (1979)
Dupire, B.: Pricing with a smile. Risk 7, 32–39 (1994)
Filipović, D., Tappe, S., Teichmann, J.: Term structure models driven by Wiener process and Poisson measures: existence and positivity. SIAM J. Financ. Math. 1, 523–554 (2010)
Gyöngy, I.: Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probab. Theory Relat. Fields 71, 501–516 (1986)
Jacod, J.: Une généralisation des semimartingales: les processus admettant un processus à accroissements indépendants tangent. In: Séminaire de Probabilités XVIII. Lecture Notes in Mathematics, vol. 1059, pp. 91–118. Springer, Heidelberg (1984)
Jacod, J., Protter, P.: Risk neutral compatibility with option prices. Finance Stoch. 14, 285–315 (2010)
Jacod, J., Sadi, H.: Processus admettant un processus à accroissements indépendants: Cas général. In: Séminaire de Probabilités XXI. Lecture Notes in Mathematics, vol. 1247, pp. 479–514. Springer, Heidelberg (1987)
Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes. Springer, Berlin (2003)
Kou, S.: A jump-diffusion model for option pricing. Manag. Sci. 48, 1086–1101 (2002)
Kuo, H.: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics, vol. 463. Springer, Berlin (1975)
Laurent, J.P., Leisen, D.: Building a consistent pricing model from observed option prices. In: Avellaneda, M. (ed.) Collected Papers of the NYU Mathematical Finance Seminar II, pp. 216–238. World Scientific, Singapore (2000)
Lepingle, D., Mémin, J.: Sur l’intégrabilité uniforme des martingales exponentielles. Probab. Theory Relat. Fields 42, 175–203 (1978)
Madan, D., Seneta, E.: The variance gamma (V.G.) model for share market returns. J. Bus. 63, 511–524 (1990)
Merton, R.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)
Protter, P.: Stochastic Integration and Differential Equations. Springer, Berlin (2005)
Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)
Schönbucher, P.: A market model for stochastic implied volatility. Philos. Trans. R. Soc. Lond. Ser. A 357, 2071–2092 (1999)
Schweizer, M., Wissel, J.: Arbitrage-free market models for option prices: the multi-strike case. Finance Stoch. 12, 469–505 (2008)
Schweizer, M., Wissel, J.: Term structures of implied volatilities: absence of arbitrage and existence results. Math. Finance 18, 77–114 (2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
Partially supported by NSF Grant #180-6024.
Rights and permissions
About this article
Cite this article
Carmona, R., Nadtochiy, S. Tangent Lévy market models. Finance Stoch 16, 63–104 (2012). https://doi.org/10.1007/s00780-011-0158-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00780-011-0158-8
Keywords
- Implied volatility surface
- Tangent models
- Lévy processes
- Market models
- Arbitrage-free term structure dynamics
- Heath–Jarrow–Morton theory