Finance and Stochastics

, Volume 15, Issue 3, pp 513–540 | Cite as

Pricing equity default swaps under the jump-to-default extended CEV model

  • Rafael Mendoza-Arriaga
  • Vadim Linetsky


Equity default swaps (EDS) are hybrid credit-equity products that provide a bridge from credit default swaps (CDS) to equity derivatives with barriers. This paper develops an analytical solution to the EDS pricing problem under the jump-to-default extended constant elasticity of variance model (JDCEV) of Carr and Linetsky. Mathematically, we obtain an analytical solution to the first passage time problem for the JDCEV diffusion process with killing. In particular, we obtain analytical results for the present values of the protection payoff at the triggering event, periodic premium payments up to the triggering event, and the interest accrued from the previous periodic premium payment up to the triggering event, and we determine arbitrage-free equity default swap rates and compare them with CDS rates. Generally, the EDS rate is strictly greater than the corresponding CDS rate. However, when the triggering barrier is set to be a low percentage of the initial stock price and the volatility of the underlying firm’s stock price is moderate, the EDS and CDS rates are quite close. Given the current movement to list CDS contracts on organized derivatives exchanges to alleviate the problems with the counterparty risk and the opacity of over-the-counter CDS trading, we argue that EDS contracts with low triggering barriers may prove to be an interesting alternative to CDS contracts, offering some advantages due to the unambiguity, and transparency of the triggering event based on the observable stock price.


Default Credit default swaps Equity default swaps Credit spread Corporate bonds Equity derivatives Credit derivatives CEV model Jump-to-default extended CEV model 

Mathematics Subject Classification (2000)

60J35 60J60 60J65 60G70 

JEL Classification

G12 G13 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abad, J., Sesma, J.: Computation of the regular confluent hypergeometric function. Math. J. 5(4), 74–76 (1995) Google Scholar
  2. 2.
    Abad, J., Sesma, J.: Successive derivatives of Whittaker functions with respect to the first parameter. Comput. Phys. Commun. 156(1), 13–21 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Albanese, C., Chen, O.X.: Pricing equity default swaps. Risk 18(6), 83–87 (2005) Google Scholar
  4. 4.
    Asmussen, S., Madan, D., Pistorius, M.: Pricing equity default swaps under an approximation to the CGMY Lévy model. J. Comput. Finance 11(2), 79–93 (2007) Google Scholar
  5. 5.
    Atlan, M., Leblanc, B.: Time-changed Bessel processes and credit risk. arXiv:math/0604305v1, April 2006. Working Paper
  6. 6.
    Atlan, M., Leblanc, B.: Hybrid equity-credit modelling. Risk Mag. 18(8), 61–66 (2005) Google Scholar
  7. 7.
    Borodin, A., Salminen, P.: Handbook of Brownian Motion: Facts and Formulae, 2nd rev. edn. Probability and Its Applications. Birkhäuser, Basel (2002) zbMATHCrossRefGoogle Scholar
  8. 8.
    Buchholz, H.: The Confluent Hypergeometric Function with Special Emphasis on Its Applications. Springer, Berlin (1969) zbMATHGoogle Scholar
  9. 9.
    Campi, L., Polbennikov, S., Sbuelz, A.: Systematic equity-based credit risk: A CEV model with jump to default. J. Econ. Dyn. Control 33, 93–108 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Campi, L., Sbuelz, A.: Closed-form pricing of benchmark equity default swaps under the CEV assumption. Risk Lett. 1(3), 107 (2005) Google Scholar
  11. 11.
    Carr, P., Linetsky, V.: A jump to default extended CEV model: An application of Bessel processes. Finance Stoch. 10, 303–330 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Cox, J.C.: Notes on option pricing I: Constant elasticity of variance diffusions. J. Portf. Manag. 23, 15–17 (1975). Reprinted from December 1996 Google Scholar
  13. 13.
    Davydov, D., Linetsky, V.: Pricing and hedging path-dependent options under the CEV process. Manag. Sci. 47, 949–965 (2001) CrossRefGoogle Scholar
  14. 14.
    Davydov, D., Linetsky, V.: Pricing options on scalar diffusions: An eigenfunction expansion approach. Oper. Res. 51, 185–209 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Gutierrez, C.: CME, Citadel launching CDS exchange. (2008)
  16. 16.
    Jobst, N., de Servigny, A.: An empirical analysis of equity default swaps I: Univariate insights. SSRN eLibrary: Working Paper Series, (2005)
  17. 17.
    Jobst, N., de Servigny, A.: An empirical analysis of equity default swaps II: Multivariate insights. SSRN eLibrary: Working Paper Series, (2005)
  18. 18.
    Linetsky, V.: Lookback options and diffusion hitting times: A spectral expansion approach. Finance Stoch. 8, 343–371 (2004) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Linetsky, V.: The spectral decomposition of the option value. Int. J. Theor. Appl. Finance 7, 337–384 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Picone, D.: Pricing and rating CDOs of equity default swaps with NGARCH-M copulae. Working Paper: Cass Business School—London, (May 2005)
  21. 21.
    Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals Series: More Special Functions. Integrals and Series, vol. III. CRC Press, Boca Raton (1990) zbMATHGoogle Scholar
  22. 22.
    Schroder, M.: Computing the constant elasticity of variance option pricing formula. J. Finance 44, 211–219 (1989) CrossRefGoogle Scholar
  23. 23.
    Slater, L.J.: Confluent Hypergeometric Functions. Cambridge University Press, Cambridge (1960) zbMATHGoogle Scholar
  24. 24.
    Weidner, N.J., Melo, J.D., Williams, P.J.: Equity default swaps and their use in CDO transactions. Cadwalader: The Capital Markets Report (Winter 2005), pp. 5–9 Google Scholar
  25. 25.
    Wolcott, R.: Equity default swaps. Two of a kind? Risk Mag. 17(3), 24–27 (2004) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Information, Risk, & Operations Management Dept. (IROM), McCombs School of BusinessThe University of Texas at AustinAustinUSA
  2. 2.Department of Industrial Engineering and Management Sciences, McCormick School of Engineering and Applied SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations