Abstract
In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be a diffusion or a Markov process, as the examples in Sect. 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.
Similar content being viewed by others
References
Alòs, E.: A generalization of the Hull and White formula with applications to option pricing approximation. Finance Stoch. 10, 353–365 (2006)
Alòs, E., Nualart, D.: An extension of Itô’s formula for anticipating processes. J. Theor. Probab. 11, 493–514 (1998)
Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29, 766–801 (2001)
Bakshi, G., Cao, C., Chen, Z.: Empirical performance of alternative option pricing models. J. Finance 52, 2003–2049 (1997)
Ball, C., Roma, A.: Stochastic volatility option pricing. J. Finance Quant. Anal. 29, 589–607 (1994)
Barndorff-Nielsen, O.E., Shephard, N.: Modelling by Lévy processes for financial econometrics. In: Barndorff-Nielsen, O.E., Mikosch, T., Resnick, S.I. (eds.) Lévy Processes: Theory and Applications, pp. 283–318. Birkhäuser, Basel (2001)
Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 64, 253–280 (2002)
Bates, D.S.: Jumps and stochastic volatility: exchange rate processes implicit in Deutsche Mark options. Rev. Finance Stud. 9, 69–107 (1996)
Carr, P., Wu, L.: The finite moment log stable process and option pricing. J. Finance 58, 753–778 (2003)
Comte, F., Renault, E.: Long memory in continuous-time stochastic volatility models. Math. Finance 8, 291–323 (1998)
Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343–1376 (2000)
Fouque, J.-P., Papanicolaou, G., Sircar, R., Solna, K.: Singular perturbations in option pricing. SIAM J. Appl. Math. 63, 1648–1665 (2003)
Fouque, J.-P., Papanicolaou, G., Sircar, R., Solna, K.: Maturity cycles in implied volatility. Finance Stoch. 8, 451–477 (2004)
Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Finance Stud. 6, 327–343 (1993)
Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42, 281–300 (1987)
Jacod, J., Protter, P.: Risk neutral compatibility with option prices. Preprint (2006). http://legacy.orie.cornell.edu/~protter/finance.html
Lee, R.W.: Implied volatility: statics, dynamics, and probabilistic interpretation. In: Baeza-Yates, R., Glaz, J., Gzyl, H., et al. (eds.) Recent Advances in Applied Probability, pp. 241–268. Springer, Berlin (2004)
Lewis, A.L.: Option Valuation Under Stochastic Volatility with Mathematica Code. Finance Press, Newport Beach (2000)
Medvedev, A., Scaillet, O.: Approximation and calibration of short-term implied volatilities under jump-diffusion stochastic volatility. Rev. Finance Stud. 20(2), 427–459 (2007)
Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin (1995)
Renault, E., Touzi, N.: Option hedging and implied volatilities in a stochastic volatility model. Math. Finance 6, 279–302 (1996)
Schweizer, M., Wissel, J.: Term structures of implied volatilities: absence of arbitrage and existence results. Math. Finance (2006, to appear)
Scott, L.O.: Option pricing when the variance changes randomly: theory, estimation and an application. J. Finance Quant. Anal. 22, 419–438 (1987)
Stein, E.M., Stein, J.C.: Stock price distributions with stochastic volatility: an analytic approach. Rev. Finance Stud. 4, 727–752 (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
E. Alòs’ research is supported by grants MEC FEDER MTM 2006 06427 and SEJ2006-13537.
J.A. León’s research is partially supported by the CONACyT grant 45684-F.
J. Vives’ research is supported by grant MEC FEDER MTM 2006 06427.
Rights and permissions
About this article
Cite this article
Alòs, E., León, J.A. & Vives, J. On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch 11, 571–589 (2007). https://doi.org/10.1007/s00780-007-0049-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00780-007-0049-1
Keywords
- Black-Scholes formula
- Derivative operator
- Itô’s formula for the Skorohod integral
- Jump-diffusion stochastic volatility model