Skip to main content
Log in

Multivariate risks and depth-trimmed regions

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We describe a general framework for measuring risks, where the risk measure takes values in an abstract cone. It is shown that this approach naturally includes the classical risk measures and set-valued risk measures and yields a natural definition of vector-valued risk measures. Several main constructions of risk measures are described in this axiomatic framework.

It is shown that the concept of depth-trimmed (or central) regions from multivariate statistics is closely related to the definition of risk measures. In particular, the halfspace trimming corresponds to the Value-at-Risk, while the zonoid trimming yields the expected shortfall. In the abstract framework, it is shown how to establish a both-ways correspondence between risk measures and depth-trimmed regions. It is also demonstrated how the lattice structure of the space of risk values influences this relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, C.: Spectral measures of risk: A coherent representation of subjective risk aversion. J. Bank. Finance 26, 1505–1518 (2002)

    Article  Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bäuerle, N., Müller, A.: Stochastic orders and risk measures: consistency and bounds. Insur. Math. Econ. 38, 132–148 (2006)

    Article  MATH  Google Scholar 

  4. Burgert, C., Rüschendorf, L.: Consistent risk measures for portfolio vectors. Insur. Math. Econ. 38, 289–297 (2006)

    Article  MATH  Google Scholar 

  5. Cascos, I.: Depth functions based on a number of observations of a random vector. Working paper 07-29. Statistics and Econometrics Series, Universidad Carlos III de Madrid (2007). Available from http://econpapers.repec.org/paper/ctewsrepe/

  6. Cascos, I., López-Díaz, M.: Integral trimmed regions. J. Multivar. Anal. 96, 404–424 (2005)

    Article  MATH  Google Scholar 

  7. Cherny, A.S., Madan, D.B.: CAPM, rewards, and empirical asset pricing with coherent risk. Arxiv:math.PR/0605065 (2006)

  8. Davydov, Y., Molchanov, I., Zuyev, S.: Strictly stable distributions on convex cones. ArXiv math.PR/0512196 (2005)

  9. Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schönbucher, P.J. (eds.) Advances in Finance and Stochastics, pp. 1–37. Springer, Berlin (2002)

    Google Scholar 

  10. Embrechts, P., Puccetti, G.: Bounds for functions of multivariate risks. J. Multivar. Anal. 97, 526–547 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stochastics 6, 429–447 (2002)

    Article  MATH  Google Scholar 

  12. Hamel, A.H.: Translative sets and functions and their applications to risk measure theory and nonlinear separation. Available from http://www.gloriamundi.org (2006)

  13. Heijmans, H.J.A.M.: Morphological Image Operators. Academic, Boston (1994)

    MATH  Google Scholar 

  14. Jarrow, R.: Put option premiums and coherent risk measures. Math. Finance 12, 135–142 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jaschke, S., Küchler, U.: Coherent risk measures and good-deal bounds. Finance Stochastics 5, 181–200 (2001)

    Article  MATH  Google Scholar 

  16. Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Finance Stochastics 8, 531–552 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Kabanov, Y.M.: Hedging and liquidation under transaction costs in currency markets. Finance Stochastics 3, 237–248 (1999)

    Article  MATH  Google Scholar 

  18. Koshevoy, G.A., Mosler, K.: Zonoid trimming for multivariate distributions. Ann. Stat. 25, 1998–2017 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces, vol. 1. North-Holland, Amsterdam (1971)

    Google Scholar 

  20. Massé, J.C., Theodorescu, R.: Halfplane trimming for bivariate distribution. J. Multivar. Anal. 48, 188–202 (1994)

    Article  MATH  Google Scholar 

  21. Molchanov, I.: Theory of Random Sets. Springer, London (2005)

    MATH  Google Scholar 

  22. Mosler, K.: Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach. Lecture Notes in Statistics, vol. 165. Springer, Berlin (2002)

    MATH  Google Scholar 

  23. Rousseeuw, P.J., Ruts, I.: The depth function of a population distribution. Metrika 49, 213–244 (1999)

    MATH  MathSciNet  Google Scholar 

  24. Zuo, Y., Serfling, R.: General notions of statistical depth function. Ann. Stat. 28, 461–482 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zuo, Y., Serfling, R.: Structural properties and convergence results for contours of sample statistical depth functions. Ann. Stat. 28, 483–499 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Molchanov.

Additional information

I. Cascos supported by the Spanish Ministry of Education and Science Grant MTM2005-02254.

I. Molchanov supported by Swiss National Science Foundation Grant 200020-109217.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cascos, I., Molchanov, I. Multivariate risks and depth-trimmed regions. Finance Stoch 11, 373–397 (2007). https://doi.org/10.1007/s00780-007-0043-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-007-0043-7

Keywords

Mathematics Subject Classification (2000)

JEL

Navigation