Skip to main content
Log in

Centered convolutional deep Boltzmann machine for 2D shape modeling

  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

An object shape information plays a vital role in many computer applications. Among these applications, some tasks can allow object shape analysis directly solve the problem. Thus, how to extract shape features and model the shape is a crucial issue. This paper proposes a new shape modeling method utilizing the centered convolutional deep Boltzmann machine to model two-dimensional (2D) shape. The proposed method employs a probabilistic generative model based on deep Boltzmann machine and convolution computation to extract both local and global features of the shape within one framework. In addition, we also propose a bidirectional inference-based training algorithm coupled with the centering method to better learn the probability distribution of shapes without the need for a pre-training procedure. Our experimental results show that the proposed model can achieve best shape modeling performance in qualitative and quantitative evaluation compared with other probabilistic generative models, including the restricted Boltzmann machine, convolutional restricted Boltzmann machine, and deep Boltzmann machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liu P, Wang G, Yu Zs, Guo X, Lu W (2019) Vehicle tracking based on shape information and inter-frame motion vector. Comput Electr Eng 78:22–31

    Article  Google Scholar 

  2. Liu S, Peng Y (2012) A local region-based Chan–Vese model for image segmentation. Pattern Recogn 45(7):2769–2779

    Article  Google Scholar 

  3. Ni F, Wang B (2018) Integral contour angle: an invariant shape descriptor for classification and retrieval of leaf images. In: 2018 25th IEEE international conference on image processing (ICIP). IEEE, Athens, pp 1223–1227

  4. Kurnianggoro LW, Jo K-H (2018) A survey of 2D shape representation: methods, evaluations, and future research directions. Neurocomputing 300:1–16

    Article  Google Scholar 

  5. Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37(1):1–19

    Article  Google Scholar 

  6. Flusser J, Suk T (1993) Pattern recognition by affine moment invariants. Pattern Recogn 26 (1):167–174

    Article  MathSciNet  Google Scholar 

  7. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522

    Article  Google Scholar 

  8. Jalba AC, Wilkinson MHF, Roerdink JBTM (2006) Shape representation and recognition through morphological curvature scale spaces. IEEE Trans Image Process 15(2):331–341

    Article  Google Scholar 

  9. Pitas I, Venetsanopoulos AN (1992) Morphological shape representation. Pattern Recogn 25 (6):555–565

    Article  Google Scholar 

  10. Lu G, Li R, Kolagunda A, Kambhamettu C (2016) Neural network shape: organ shape representation with radial basis function neural networks. In: 2016 IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE, Shanghai, pp 932–936

  11. Van Nguyen H, Porikli F (2013) Support vector shape: a classifier-based shape representation. IEEE Trans Pattern Anal Mach Intell 35(4):970–982

    Article  Google Scholar 

  12. Ahmed B (2010) Image segmentation using MRFs and statistical shape modeling. PHD Thesis, Ecole Centrale Paris

    Google Scholar 

  13. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press

  14. Latif A, Rasheed A, Sajid U, Ahmed J, Ali N, Ratyal NI, Zafar B, Dar SH, Sajid M, Khalil T (2019) Content-based image retrieval and feature extraction: a comprehensive review. Math Probl Eng 2019:1–21

    Article  Google Scholar 

  15. Le Roux N, Heess N, Shotton J, Winn J (2011) Learning a generative model of images by factoring appearance and shape. Neural Comput 23(3):593–650

    Article  MathSciNet  Google Scholar 

  16. Smolensky P (1986) Information processing in dynamical systems: foundations of harmony theory, vol 1. MIT Press, USA

    Google Scholar 

  17. Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  Google Scholar 

  18. Salakhutdinov R, Hinton G (2009) Deep Boltzmann machines. In: van Dyk D, Welling M (eds) Proceedings of the twelth international conference on artificial intelligence and statistics, volume 5 of proceedings of machine learning research. Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, April 2009. PMLR, pp 448–455

  19. Wang Z, Wu Q (2017) Shape completion using deep Boltzmann machine. Comput Intell Neurosci 2017:1–10

    Google Scholar 

  20. Lee H, Grosse R, Ranganath R, Ng AY (2011) Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun ACM 54(10):95

    Article  Google Scholar 

  21. Ali Eslami SM, Heess Nicolas, Williams CKI, Winn J (2014) The shape Boltzmann machine: a strong model of object shape. Int J Comput Vis 107(2):155–176

    Article  MathSciNet  Google Scholar 

  22. Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural Comput 14(8):1771–1800

    Article  Google Scholar 

  23. Lee H, Grosse R, Ranganath R, Ng v (2009) Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th annual international conference on machine learning, ICML ’09. ACM, New York, pp 609–616

  24. Melchior J, Fischer A, Wiskott L (2016) How to center deep Boltzmann machines. J Mach Learn Res 17(99):1–61

    MathSciNet  MATH  Google Scholar 

  25. Montavon G, Müller K-R (2012) Deep Boltzmann machines and the centering trick. In: Montavon G, Orr GB, Müller K-R (eds) Neural networks: tricks of the trade, vol 7700. Springer, Berlin, pp 621–637

  26. Salakhutdinov R, Hinton GE (2012) An efficient learning procedure for deep Boltzmann machines. Neural Comput 24(8):1967–2006

    Article  MathSciNet  Google Scholar 

  27. Bai X, Liu W, Tu Z (2009) Integrating contour and skeleton for shape classification. In: 2009 IEEE 12th international conference on computer vision workshops, ICCV Workshops. IEEE, Kyoto, pp 360–367

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China under Grant 41471280, Grant 61701290, Grant 61971273, and Grant 61701289.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangong Yang or Xili Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, S. & Wang, X. Centered convolutional deep Boltzmann machine for 2D shape modeling. Pers Ubiquit Comput 26, 913–923 (2022). https://doi.org/10.1007/s00779-020-01487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-020-01487-z

Keywords

Navigation