Personalized stress monitoring: a smartphone-enabled system for quantification of salivary cortisol

Abstract

Collection of salivary cortisol has been widely used as a method of investigating an array of health parameters. Monitoring of cortisol levels can help us to understand stress levels and the body’s response to stressors. Traditional methods of measuring cortisol in saliva, however, require costly equipment, trained personnel, and transportation of samples to a centralized laboratory. This creates a barrier to personal monitoring of cortisol. It also adds a level of cost and difficulty to large-scale studies which require participants to store and ship their saliva samples. Here, we present a novel system in which an individual with minimal training may collect their own saliva sample and measure it at home. Our system utilizes a lateral flow assay, a portable imaging device, and a smartphone to give salivary cortisol results in less than 15 min. We also demonstrate the use of our system on samples from a human study and give results from that study, which analyzes the relationship between cortisol levels and alertness across multiple days.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

HPA axis:

Hypothalamic-pituitary-adrenal axis

CAR:

Cortisol awakening response

PVT:

Psychomotor vigilance task

References

  1. 1.

    O’Connor TM, O’Halloran DJ, Shanahan F (2000) The stress response and the hypothalamic-pituitary-adrenal axis : from molecule to melancholia. Q J Med 93:323–333

    Article  Google Scholar 

  2. 2.

    McEwen BS (2004) Protection and damage from acute and chronic stress: allostastis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci 1032:1–7

    Article  Google Scholar 

  3. 3.

    Shannon M, King TL, Kennedy HP (2007) Allostasis: a theoretical framework for understanding and evaluating perinatal health outcomes. JOGNN 36:125–134

    Article  Google Scholar 

  4. 4.

    Gold PW, Loriaux DL, Roy A, Kling MA, Calabrese JR, Kellner CH, Nieman LK, Post RM, Pickar D, Gallucci W, Avgerinos P, Paul S, Oldfield EH, Cutler GB Jr, Chrousos GP (1986) Responses to corticotropin releasing hormone in the hypocortisolism of depression and Cushing’s disease. N Engl J Med 314:1329–1335

    Article  Google Scholar 

  5. 5.

    Bailey SL, Heitkemper MM (2001) Circadian rhythmicity of cortisol and body temperature: morningness-eveningness effects. Chronobiol Int 18:249–261. https://doi.org/10.1081/CBI-100103189

    Article  Google Scholar 

  6. 6.

    Van Dongen HPA, Dinges DF (2005) Circadian Rhythms in Sleepiness, Alertness, and Performance. In: Kryger MH, Roth T, Dement WC (eds) Princ Pract Sleep Med. 4th ed. pp 435–443

  7. 7.

    Hellhammer DH, Wüst S, Kudielka BM (2009) Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 34:163–171. https://doi.org/10.1016/j.psyneuen.2008.10.026

    Article  Google Scholar 

  8. 8.

    Ward Thompson C, Roe J, Aspinall P, Mitchell R, Clow A, Miller D (2012) More green space is linked to less stress in deprived communities: evidence from salivary cortisol patterns. Landsc Urban Plan 105:221–229. https://doi.org/10.1016/j.landurbplan.2011.12.015

    Article  Google Scholar 

  9. 9.

    Petrowski K, Wintermann G-B, Schaarschmidt M, Bornstein SR, Kirschbaum C (2013) Blunted salivary and plasma cortisol response in patients with panic disorder under psychosocial stress. Int J Psychophysiol 88:35–39. https://doi.org/10.1016/j.ijpsycho.2013.01.002

    Article  Google Scholar 

  10. 10.

    La Marca-Ghaemmaghami P, La Marca R, Dainese SM et al (2013) The association between perceived emotional support, maternal mood, salivary cortisol, salivary cortisone, and the ratio between the two compounds in response to acute stress in second trimester pregnant women. J Psychosom Res 75:314–320. https://doi.org/10.1016/j.jpsychores.2013.08.010

    Article  Google Scholar 

  11. 11.

    Yamaguchi M, Matsuda Y, Sasaki S, Sasaki M, Kadoma Y, Imai Y, Niwa D, Shetty V (2013) Immunosensor with fluid control mechanism for salivary cortisol analysis. Biosens Bioelectron 41:186–191. https://doi.org/10.1016/j.bios.2012.08.016

    Article  Google Scholar 

  12. 12.

    Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, di Nardo F, Roda A (2015) A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron 64:63–68. https://doi.org/10.1016/j.bios.2014.08.048

    Article  Google Scholar 

  13. 13.

    Carneiro D, Novais P, Augusto JC, Payne N (2017) New methods for stress assessment and monitoring at the workplace. IEEE Trans Affect Comput:1–1. https://doi.org/10.1109/TAFFC.2017.2699633

  14. 14.

    Umeda T, Hiramatsu R, Iwaoka T et al (1981) Use of saliva for monitoring unbound free cortisol levels in serum. Clin Chim Acta 110:245–253. https://doi.org/10.1016/0009-8981(81)90353-3

    Article  Google Scholar 

  15. 15.

    Dinges DF, Powell JW (1985) Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav Res Methods Instrum Comput 17:652–655

    Article  Google Scholar 

  16. 16.

    Van Dongen HPA, Maislin G, Mullington JM, Dinges DF (2003) The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and Total sleep deprivation. Sleep 26:117–126

    Article  Google Scholar 

  17. 17.

    Kay M, Rector K, Consolvo S et al (2013) PVT-Touch: adapting a reaction time test for touchscreen devices. In: 7th Int. Conf. Pervasive Comput. Technol. Healthc. Work. Venice, Italy, pp 248–251

  18. 18.

    Wright KP Jr, Hull JT, Czeisler CA (2002) Relationship between alertness, performance and body temperature in humans. Am J Phys Regul Integr Comp Phys 283:R1370–R1377. https://doi.org/10.1152/ajpregu.00205.2002

    Google Scholar 

  19. 19.

    Lamond N, Jay SM, Dorrian J, Ferguson SA, Roach GD, Dawson D (2008) The sensitivity of a palm-based psychomotor vigilance task to severe sleep loss. Behav Res Methods 40:347–352

    Article  Google Scholar 

  20. 20.

    Basner M, Dinges DF (2011) Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. Sleep 34:581–591

    Article  Google Scholar 

  21. 21.

    Lieberman HR, Waldhauser F, Garfield G, Lynch HJ, Wurtman RJ (1984) Effects of melatonin on human mood and performance. Brain Res 323:201–207

    Article  Google Scholar 

  22. 22.

    Laakso M-L, Porkka-Heiskanen T, Alila A, Stenberg D, Johansson G (1990) Correlation between salivary and serum melatonin: dependence on serum melatonin levels. J Pineal Res 9:39–50

    Article  Google Scholar 

  23. 23.

    Voultsios A, Kennaway DJ, Dawsont D (1997) Salivary melatonin as a circadian phase marker: validation and comparison to plasma melatonin. J Biol Rhythm 12:457–466

    Article  Google Scholar 

  24. 24.

    Loh S, Lamond N, Dorrian J, Roach G, Dawson D (2004) The validity of psychomotor vigilance tasks of less than 10-minute duration. Behav Res Methods Instrum Comput 36:339–346

    Article  Google Scholar 

  25. 25.

    Basner M, Mollicone D, Dinges DF (2011) Validity and sensitivity of a brief psychomotor vigilance test (PVT-B) to total and partial sleep deprivation. Acta Astronaut 69:949–959. https://doi.org/10.1016/j.actaastro.2011.07.015

    Article  Google Scholar 

  26. 26.

    Basner M, Rubinstein J (2011) Fitness for duty: a 3 minute version of the psychomotor vigilance test predicts fatigue related declines in luggage screening performance. J Occup Environ Med 53:1146–1154

    Article  Google Scholar 

  27. 27.

    Chalder T, Berelowitz G, Pawlikowska T, Watts L, Wessely S, Wright D, Wallace EP (1993) Development of a fatigue scale. J Psychosom Res 37:147–153

    Article  Google Scholar 

  28. 28.

    Hruschka DJ, Kohrt BA, Worthman CM (2005) Estimating between- and within-individual variation in cortisol levels using multilevel models. Psychoneuroendocrinology 30:698–714. https://doi.org/10.1016/j.psyneuen.2005.03.002

    Article  Google Scholar 

  29. 29.

    Lu Z, O’Dell D, Srinivasan B, Rey E, Wang R, Vemulapati S, Mehta S, Erickson D (2017) A rapid diagnostic testing platform for iron and vitamin A deficiency. Proc Natl Acad Sci 114:13513–13518. https://doi.org/10.1073/pnas.1711464114

    Article  Google Scholar 

  30. 30.

    Srinivasan B, O’Dell D, Finkelstein JL, Lee S, Erickson D, Mehta S (2018) ironPhone: mobile device-coupled point-of-care diagnostics for assessment of iron status by quantification of serum ferritin. Biosens Bioelectron 99:115–121. https://doi.org/10.1016/J.BIOS.2017.07.038

    Article  Google Scholar 

  31. 31.

    Vemulapati S, Rey E, O’Dell D, Mehta S, Erickson D (2017) A quantitative point-of-need assay for the assessment of vitamin D3 deficiency. Sci Rep 7:14142. https://doi.org/10.1038/s41598-017-13044-5

    Article  Google Scholar 

  32. 32.

    Rey EG, O’Dell D, Mehta S, Erickson D (2017) Mitigating the hook effect in lateral flow sandwich immunoassays using real-time reaction kinetics. Anal Chem 89:5095–5100. https://doi.org/10.1021/acs.analchem.7b00638

    Article  Google Scholar 

  33. 33.

    Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85:162–169. https://doi.org/10.1067/mpr.2001.113778

    Article  Google Scholar 

Download references

Acknowledgements

A large portion of the work done for this paper was done in the Nanobiotechnology Center at Cornell University. Some of the equipment used in this work was located in the Kotlikoff Lab in the Cornell University College of Veterinary Medicine. Support for statistical analysis was provided by Lynn Johnson at the Cornell Statistical Consulting Unit.

Funding

This work was supported by the National Science Foundation [grant number CBET-1343058], the Robert Wood Johnson Health Data Exploration Agile Research Grant, and the Intel Science and Technology Center for Pervasive Computing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Erickson.

Ethics declarations

The study was approved by Cornell University’s Institutional Review Board.

Electronic supplementary material

ESM 1

(PDF 580 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rey, E., Jain, A., Abdullah, S. et al. Personalized stress monitoring: a smartphone-enabled system for quantification of salivary cortisol. Pers Ubiquit Comput 22, 867–877 (2018). https://doi.org/10.1007/s00779-018-1164-z

Download citation

Keywords

  • Salivary cortisol
  • Stress
  • Lateral flow assay
  • Alertness