Advertisement

Future impacts of the reforestation policy on the atmospheric parameters in Ireland: a sensitivity study including heat discomfort impacts on humans and livestock

  • Arianna Valmassoi
  • Salem Gharbia
  • Silvana Di Sabatino
  • Prashant Kumar
  • Francesco Pilla
Original Article

Abstract

The increase of temperature attributed to anthropogenic emissions is projected to continue in future climate scenarios. Protocols and policies are being put in place in several European countries to reduce both emissions and impact of human activities on climate. The Irish Reforestation policy is a good example of such protocols. Nevertheless, often contemplated policies do not take into account their potential effects on the atmospheric variables. This study aims to assess the influence of the increase of vegetation cover over Ireland, on surface temperature, livestock, and human heat comfort, using the Weather Research Forecast (WRF-ARW 3.7.1) model. Multi-scale numerical simulations are performed under two scenarios: (i) a “control scenario” considering no change in vegetation cover with respect to the prescribed one and (ii) a “green scenario” with increased tree cover based on the introduced Irish Reforestation policy. To simulate this policy, the cropland and vegetative mosaic is substituted with evergreen broad-leaf forest, increasing the total forest area from 19.7 to 36.2% of the land in the analyzed domain. This change in vegetation cover increases the temperature over the simulated domain up to \(0.7~^{\circ }\)C and, moreover, it enhances both human and livestock heat discomfort during the daytime, with different magnitude all over the domain. It is concluded that the reforestation policy, which is introduced to mitigate the climate warming and greenhouse gas emissions, causes a further increase in temperature along with heat discomfort to both human and livestock.

Keywords

Climate change Reforestation policy Livestock Sensitivity study 

Notes

Funding information

This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 689954. This paper reflects the authors’ views. The European Commission is not liable for any use that may be made of the information contained therein.

References

  1. 1.
    Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schȧr C, Sutton R, van Oldenborgh GJ, Vecchi G, Wang HJ (2013) Near-term climate change projections and predictability. Climate Change 2013 - The Physical Science Basis 953–1028.  https://doi.org/10.1017/CBO9781107415324.023
  2. 2.
    Department of Agriculture Food and Marine, Forestry Programme 2014 2020 : Ireland. Tech. Rep. July, Department of Agriculture,Food and Marine, Ireland (2015)Google Scholar
  3. 3.
    DAFM, National Sheep and Goat Census. Tech. Rep. December, Department of Agriculture, Food and Marine, Ireland (2014)Google Scholar
  4. 4.
    McPherson RA (2007) A review of vegetation-atmosphere interactions and their influences on mesoscale phenomena. Prog Phys Geogr 31(3):261–285.  https://doi.org/10.1177/0309133307079055 CrossRefGoogle Scholar
  5. 5.
    Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449.  https://doi.org/10.1126/science.1155121. http://www.sciencemag.org/cgi/doi/10.1126/science.1155121 CrossRefGoogle Scholar
  6. 6.
    Foley JA (2005) Global consequences of land use. Science 309(5734):570–574.  https://doi.org/10.1126/science.1111772. http://www.sciencemag.org/cgi/doi/10.1126/science.1111772 CrossRefGoogle Scholar
  7. 7.
    Oleson KW, Bonan GB, Levis S, Vertenstein M (2004) Effects of land use change on North American climate: impact of surface datasets and model biogeophysics. Clim Dyn 23(2):117–132.  https://doi.org/10.1007/s00382-004-0426-9. http://link.springer.com/10.1007/s00382-004-0426-9 CrossRefGoogle Scholar
  8. 8.
    Betts R. (2001) Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing. Atmos Sci Lett 2(1–4):39–51.  https://doi.org/10.1006/asle.2001.0023 CrossRefGoogle Scholar
  9. 9.
    Teuling AJ, Seneviratne SI, Stöckli R, Reichstein M, Moors E, Ciais P, Luyssaert S, van den Hurk B, Ammann C, Bernhofer C, Dellwik E, Gianelle D, Gielen B, Grünwald T, Klumpp K, Montagnani L, Moureaux C, Sottocornola M, Wohlfahrt G (2010) Contrasting response of European forest and grassland energy exchange to heatwaves. Nat Geosci 3(10):722–727.  https://doi.org/10.1038/ngeo950 CrossRefGoogle Scholar
  10. 10.
    Loveland T, Mahmood R, Patel-Weynand T, Karstensen K, Beckendorf K, Bliss N, Carleton A (2012) Open-file, National climate assessment technical report on the impacts of climate and land use and land cover change. Tech. rep. https://adapt.nd.edu/resources/1040/download/of2012-1155.pdf
  11. 11.
    Sutton WR, Block RI (2015) Adaptation to climate change in Europe and Central Asia agriculture. Tech. repGoogle Scholar
  12. 12.
    Olesen JE (2005) Climate change as a driver for European agriculture. Danish Institute of Agricultural SciencesGoogle Scholar
  13. 13.
    Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Chang 14(1):53–67.  https://doi.org/10.1016/j.gloenvcha.2003.10.008 CrossRefGoogle Scholar
  14. 14.
    Gharbia SS, Alfatah SA, Gill L, Johnston P, Pilla F (2016) Land use scenarios and projections simulation using an integrated GIS cellular automata algorithms. Model Earth Syst Environ 2(3):151.  https://doi.org/10.1007/s40808-016-0210-y CrossRefGoogle Scholar
  15. 15.
    Luyssaert S, Jammet M, Stoy PC, Estel S, Pongratz J, Ceschia E, Churkina G, Don A, Erb K, Ferlicoq M, Gielen B, Grünwald T, Houghton RA, Klumpp K, Knohl A, Kolb T, Kuemmerle T, Laurila T, Lohila A, Loustau D, McGrath MJ, Meyfroidt P, Moors EJ, Naudts K, Novick K, Otto J, Pilegaard K, Pio CA, Rambal S, Rebmann C, Ryder J, Suyker AE, Varlagin A, Wattenbach M, Dolman AJ (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat Clim Change 4(5):389–393.  https://doi.org/10.1038/nclimate2196. http://www.nature.com/articles/nclimate2196 CrossRefGoogle Scholar
  16. 16.
    Kueppers LM, Snyder MA, Sloan LC (2007) Irrigation cooling effect: Regional climate forcing by land-use change. Geophys Res Lett 34(3):L03703.  https://doi.org/10.1029/2006GL028679 CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Naudts K, Chen Y, McGrath MJ, Ryder J, Valade A, Otto J, Luyssaert S (2016) Forest management: Europe’s forest management did not mitigate climate warming. Science 351(6273):597–599.  https://doi.org/10.1126/science.aad7270. http://www.ncbi.nlm.nih.gov/pubmed/26912701 CrossRefGoogle Scholar
  19. 19.
    Burakowski EA, Ollinger SV, Bonan GB, Wake CP, Dibb JE, Hollinger DY (2016) Evaluating the climate effects of reforestation in new england using a weather research and forecasting (WRF) model multiphysics ensemble. J Clim 29(14):5141–5156.  https://doi.org/10.1175/JCLI-D-15-0286.1 CrossRefGoogle Scholar
  20. 20.
    Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, Lobell DB, Travasso MI (2009) In: Population and development review, vol 35. Cambridge University Press, pp 837–839.  https://doi.org/10.1111/j.1728-4457.2009.00312.x
  21. 21.
    Wall E, Wreford A, Topp K, Moran D (2010) Biological and economic consequences heat stress due to a changing climate on UK livestock. Adv Anim Biosci 1(1):53.  https://doi.org/10.1017/S2040470010001962. http://www.journals.cambridge.org/abstract_S2040470010001962 CrossRefGoogle Scholar
  22. 22.
    Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: A review. Glob Chang Biol 20(11):3313–3328.  https://doi.org/10.1111/gcb.12581 CrossRefGoogle Scholar
  23. 23.
    Mitchell D, Heaviside C, Vardoulakis S, Huntingford C, Masato G, Guillod BP, Frumhoff P, Bowery A, Wallom D, Allen M (2016) Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ Res Lett 11(7):074006.  https://doi.org/10.1088/1748-9326/11/7/074006 CrossRefGoogle Scholar
  24. 24.
    Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, Anderson HR, Bisanti L, D’Ippoliti D, Danova J, Forsberg B, Medina S, Paldy A, Rabczenko D, Schindler C, Michelozzi P (2008) Heat Effects on Mortality in 15 European Cities. Epidemiology 19(5):711–719.  https://doi.org/10.1097/EDE.0b013e318176bfcd CrossRefGoogle Scholar
  25. 25.
    Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317.  https://doi.org/10.1038/nature04188. http://www.nature.com/doifinder/10.1038/nature04188 http://www.nature.com/doifinder/10.1038/nature04188 CrossRefGoogle Scholar
  26. 26.
    Guirguis K, Gershunov A, Tardy A, Basu R (2014) The impact of recent heat waves on human health in California. J Appl Meteorol Climatol 53(1):3–19.  https://doi.org/10.1175/JAMC-D-13-0130.1. http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-13-0130.1 CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Barnett AG, Tong S, Clements ACA (2010) What measure of temperature is the best predictor of mortality?. Environ Res 110 (6):604–611.  https://doi.org/10.1016/j.envres.2010.05.006. http://linkinghub.elsevier.com/retrieve/pii/S0013935110000733 CrossRefGoogle Scholar
  29. 29.
    Lowe D, Ebi KL, Forsberg B (2011) Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int J Environ Res Public Health 8(12):4623–4648.  https://doi.org/10.3390/ijerph8124623. http://www.ncbi.nlm.nih.gov/pubmed/22408593, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3290979 CrossRefGoogle Scholar
  30. 30.
    Luber G, McGeehin M (2008) Climate Change and Extreme Heat Event. Amer J Prevent Med 35(5):429.  https://doi.org/10.1016/j.amepre.2008.08.021. http://www.ncbi.nlm.nih.gov/pubmed/18929969 CrossRefGoogle Scholar
  31. 31.
    Robine JM, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel JP, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus—Biologies 331(2):171–178.  https://doi.org/10.1016/j.crvi.2007.12.001. http://www.ncbi.nlm.nih.gov/pubmed/18241810 Google Scholar
  32. 32.
    Basu R, Samet JM (2002) Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence.  https://doi.org/10.1093/epirev/mxf007. http://www.ncbi.nlm.nih.gov/pubmed/12762092
  33. 33.
    Peng RD, Bobb JF, Tebaldi C, McDaniel L, Bell ML, Dominici F (2011) Toward a quantitative estimate of future heat wave mortality under global climate change. Environ Health Perspect 119(5):701–706.  https://doi.org/10.1289/ehp.1002430 CrossRefGoogle Scholar
  34. 34.
    Mora C, Dousset B, Caldwell IR, Powell FE, Geronimo RC, Bielecki CR, Counsell CWW, Dietrich BS, Johnston ET, Louis LV, Lucas MP, McKenzie MM, Shea AG, Tseng H, Giambelluca TW, Leon LR, Hawkins E, Trauernicht C (2017) Global risk of deadly heat. Nat Clim Change 7(7):501–506.  https://doi.org/10.1038/nclimate3322. http://www.nature.com/doifinder/10.1038/nclimate3322 CrossRefGoogle Scholar
  35. 35.
    Sherwood SC, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Nat Acad Sci 107(21):9552–9555.  https://doi.org/10.1073/pnas.0913352107. http://www.pnas.org/cgi/doi/10.1073/pnas.0913352107 CrossRefGoogle Scholar
  36. 36.
    Ippoliti D, Michelozzi P, Marino C, De’Donato F, Menne B, Katsouyanni K, Kirchmayer U, Analitis A, Medina-Ramón M, Paldy A, Atkinson R, Kovats S, Bisanti L, Schneider A, Lefranc A, Iñiguez C, Perucci CA (2010) The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environ Health Global Access Sci Source 9(1):37.  https://doi.org/10.1186/1476-069X-9-37. http://www.ehjournal.net/content/9/1/37 Google Scholar
  37. 37.
    Edwards R, Miema BM, Henry R, Watters RM (2014) Ireland’s Forestry Programme 2014–2020 Strategic Environmental Assessment (SEA) Non-Technical Summary. Tech. rep. https://www.agriculture.gov.ie/media/migration/forestry/forestryprogramme2014-2020/ForestryProgramme20142020NonTechnicalSummary230215.pdf
  38. 38.
    Afforestation Grant and Premium Scheme. Department of Agriculture Food and the Marine (2015)Google Scholar
  39. 39.
    F. Department of Agriculture, the Marine, Felling and Reforestation Policy. Tech. rep. (2017). http://www.agriculture.gov.ie/forestservice
  40. 40.
    Environmental Protection Agency, Ireland’s Climate Strategy to 2020 and beyond. Tech. Rep. July (2012)Google Scholar
  41. 41.
    F. Department Agriculture, the Marine, AIM Statistics Report 2013 1. Tech. rep., Department of Agriculture,Food and Marine, Ireland (2013)Google Scholar
  42. 42.
    CentralStatisticsOffice, CSO statistical release Livestock Survey December. Tech. rep. (2014)Google Scholar
  43. 43.
    Pascual Serrano D, Vera Pasamontes C, Girȯn Moreno R. (2016) Modelos animales de dolor neuropático. Tech Rep. 2.  https://doi.org/10.1017/CBO9781107415324.004
  44. 44.
    CSO, Profile 1- Town and Country. April (2012)Google Scholar
  45. 45.
    O’ Dowd C, Coleman M, Martin D (2013) Air pollution and climate change interactions. Tech. repGoogle Scholar
  46. 46.
    Gharbia SS, Gill L, Johnston P, Pilla F (2016) Multi-GCM ensembles performance for climate projection on a GIS platform. Model Earth Syst Environ 2(2):102.  https://doi.org/10.1007/s40808-016-0154-2 CrossRefGoogle Scholar
  47. 47.
    Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) J Geophys Res Atmos, 113(20)Google Scholar
  48. 48.
    Baddour O World Meteorological Organization Commission for Climatology Management Group Meeting Climate Normals. Tech. Rep. October, World Meteorological Organization WMO (2011). http://www.wmo.int/pages/prog/wcp/ccl/mg/documents/mg2011/CCl-MG-2011-Doc_10_climatenormals1.pdf
  49. 49.
    Skamarock W, Klemp J, Dudhi J, Gill D, Barker D, Duda M, Huang XY, Wang W, Powers J (2008) Technical Report (June), 113Google Scholar
  50. 50.
    U.D.o.C. National Centers for Environmental Prediction, National Weather Service, NOAA. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999 (2000).  https://doi.org/10.5065/D6M043C6
  51. 51.
    Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Month Weath Rev 134(9):2318–2341.  https://doi.org/10.1175/MWR3199.1. http://journals.ametsoc.org/doi/abs/10.1175/MWR3199.1 CrossRefGoogle Scholar
  52. 52.
    Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: preliminary model validation. Month Weath Rev 129(4):587–604.  https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2 CrossRefGoogle Scholar
  53. 53.
    Potere D, Schneider A, Angel S, Civco D (2009) Mapping urban areas on a global scale: which of the eight maps now available is more accurate?. Int J Remote Sens 30 (24):6531–6558.  https://doi.org/10.1080/01431160903121134 CrossRefGoogle Scholar
  54. 54.
    Li D, Bou-Zeid E, Barlage M, Chen F, Smith JA (2013) Development and evaluation of a mosaic approach in the WRF-Noah framework. J Geophys Res Atmos 118(21):11918–11935.  https://doi.org/10.1002/2013JD020657 CrossRefGoogle Scholar
  55. 55.
    Devaney J, Barrett B, Barrett F, Redmond J, O’Halloran J (2015) Forest cover estimation in Ireland using radar remote sensing: a comparative analysis of forest cover assessment methodologies. PLoS ONE 10(8):1–27.  https://doi.org/10.1371/journal.pone.0133583 CrossRefGoogle Scholar
  56. 56.
    Forest Service, The Second National Forest Inventory Republic of Ireland Main Findings (2013)Google Scholar
  57. 57.
    Perrin P, Martin J, Barron S, O’Neil F, McNutt K, Delaney A (2008) National survey of native woodland in Ireland. Tech. rep., NPWS IrelandGoogle Scholar
  58. 58.
  59. 59.
    MetEireann. Weather observing network. http://www.met.ie/about/weatherobservingstations/
  60. 60.
    García-Díez M, Fernández J, Fita L, Yagüe C (2013) Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q J Roy Meteorol Soc 139(671):501–514.  https://doi.org/10.1002/qj.1976 CrossRefGoogle Scholar
  61. 61.
    Buzan JR, Oleson K, Huber M (2015) Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci Model Dev 8(2):151–170.  https://doi.org/10.5194/gmd-8-151-2015 CrossRefGoogle Scholar
  62. 62.
    Guarino M-V, Martilli A, Di Sabatino S, Leo LS (2014) Modelling the urban boundary-layer over a typical mediterranean city using WRF: assessment of UHI and thermal comfort. Volume 1D, symposia: transport phenomena in mixing; turbulent flows; urban fluid mechanics; fluid dynamic behavior of complex particles; analysis of elementary processes in dispersed multiphase flows; multiphase flow with heat/mass transfer in process Tec 1D:V01DT28A006.  https://doi.org/10.1115/FEDSM2014-21572 Google Scholar
  63. 63.
    Steadman RG (1994) Norms of apparent temperature in Australia.Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Urban Institute, Department of Planning and Environmental PolicyUniversity College DublinBelfieldIreland
  2. 2.Department of Physics and AstronomyUniversity of BolognaBolognaItaly
  3. 3.Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical SciencesUniversity of SurreyGuildfordUK

Personalised recommendations