Personal and Ubiquitous Computing

, Volume 22, Issue 5–6, pp 1049–1060 | Cite as

Efficiency-based multi-item bargaining design in cognitive radio networks with spectrum coordination

  • Hang Qin
  • Min Wang
  • Zhongbo Wu
Original Article


This paper studies the spectrum sharing problem with coordination-generated wireless resource for cooperative cognitive radio networks. A new alternating-offer spectrum bargaining framework is introduced with asymmetrically bilaterial wireless resource, in terms of sequential bargaining equilibria for frequency bands for high efficiency or approximate efficiency. In the proposed framework, the role of spectrum bargaining with user diversity can constrain many items with private information for spectrum allocation, thereby aggregating to a current frequency band surplus with spectrum trading to exchange the use in the reform of spectrum regulatory practice. While the users have an incentive in agreeing on a division of resource, they also have an interest in maximizing the amount of resource that it received. Furthermore, we develop an efficiency-based algorithm to explain why spectrum bargaining based on asymmetrical resource information can get little deviation from the first best resource utilization for high efficiency consideration. Simulation results show that the proposed multi-item spectrum bargaining scheme significantly outperforms the existing schemes.


Cognitive radio networks Spectrum bargaining Multiple items allocation Multi-hop wireless network High efficiency 



The authors acknowledge the Hubei Ministry of Education Foundation (Grant: B2016176), Discipline Groups Construction Foundation of Food New-type Industrialization of Hubei University of Arts and Science.


  1. 1.
    Bajari P, Yeo J (2009) Auction design and tacit collusion in FCC spectrum auctions. Inf Econ Policy 21(2): 90–100CrossRefGoogle Scholar
  2. 2.
    Hossain E, Niyato D, Kim DI (2015) Evolution and future trends of research in cognitive radio: a contemporary survey. Wirel Commun Mob Comput 15(11):1530–1564CrossRefGoogle Scholar
  3. 3.
    Akan OB, Karli OB, Ergul O (2009) Cognitive radio sensor networks. IEEE Network 23(4): 34–40CrossRefGoogle Scholar
  4. 4.
    Sharma RK, Rawat DB (2015) Advances on security threats and countermeasures for cognitive radio networks: a survey. IEEE Commun Surv Tutorials 17(2):1023–1043CrossRefGoogle Scholar
  5. 5.
    Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(1):201–220CrossRefGoogle Scholar
  6. 6.
    Gastparh M (2007) On capacity under receive and spatial spectrum-sharing constraints. IEEE Trans Inf Theory 53(2):471–487MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hou YT, Yi S, Sherali HD (2008) Spectrum sharing for multi-hop networking with cognitive radios. IEEE J Sel Areas Commun 26(1):146–155CrossRefGoogle Scholar
  8. 8.
    Akyildiz IF, Lee W, Vuran MC, Mohanty S (2006) NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput Netw 50(4):2127–2159CrossRefGoogle Scholar
  9. 9.
    Myerson R B (2009) Learning from Schelling's strategy of conflict. J Econ Lit 47(4): 1109–1125CrossRefGoogle Scholar
  10. 10.
    Pan M, Li P, Song Y, Fang Y, Lin P, Glisic S (2014) When spectrum meets clouds: optimal session based spectrum trading under spectrum uncertainty. IEEE J Sel Areas Commun 32(3):615–627CrossRefGoogle Scholar
  11. 11.
    Xiao Y, Han Z, Chen KC, DaSilva LA (2015) Bayesian hierarchical mechanism design for cognitive radio networks. IEEE J Sel Areas Commun 33(5):986–1001CrossRefGoogle Scholar
  12. 12.
    Blume LE, Easley D, Kleinberg JM (2009) Trading networks with price-setting agents. Games and Economic Behavior 67(1): 36–50MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gabry F, Li N, Schrammar N, Girnyk M, Rasmussen LK, Skoglund M (2014) On the optimization of the secondary transmitter’s strategy in cognitive radio channels with secrecy. IEEE J Sel Areas Commun 32(3):451–463CrossRefGoogle Scholar
  14. 14.
    Byun SS, Balashingham I, Vasilakos AV, Lee HN (2014) Computation of an equilibrium in spectrum markets for cognitive radio networks. IEEE Trans Comput 63(2):304–314MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jiang C, Chen Y, Yang YH, Wang CY, Liu KJR (2014) Dynamic Chinese restaurant game: theory and application to cognitive radio networks. IEEE Trans Wirel Commun 13(4):1960–1973CrossRefGoogle Scholar
  16. 16.
    Wang T, Song L, Han Z (2012) Coalitional graph games for popular content distribution in cognitive radio VANETs. IEEE Trans Veh Technol 62(8):4010–4019CrossRefGoogle Scholar
  17. 17.
    Wang CY, Chen Y, Liu KJR (2012) Chinese restaurant game. IEEE Signal Process Lett 19(12):898–901CrossRefGoogle Scholar
  18. 18.
    Yu W, Lui R (2006) Dual methods for nonconvex spectrum optimization in multicarrier system. IEEE Trans Commun 54(7):1310–1322CrossRefGoogle Scholar
  19. 19.
    Chalkiadakis G, Elkind E, Markakis E, Polukarov M, Jennings N (2010) Cooperative games with overlapping coalitions. J Artif Intell Res 39(1):179–216MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zick Y, Markakis E, Elkind E (2014) Arbitration and stability in cooperative games with overlapping coalitions. J Artif Intell Res 50(1): 847–884MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jackson MO, Sonnenschein H, Xing Y (2015) The efficiency of bargaining with many items, available at SSRN. or
  22. 22.
    Laffont J, Martimort D (2000) Mechanism Design with Collusion and Correlation. Econometrica 68(2): 309–342CrossRefGoogle Scholar
  23. 23.
    Jehiel P, Moldovanu B, Stacchetti E (1999) Multidimensional Mechanism Design for Auctions with Externalities. J Econ Theory 85(2): 258–293MathSciNetCrossRefGoogle Scholar
  24. 24.
    Birnbaum B E, Mathieu C (2008) On-line bipartite matching made simple. Sigact News 39(1): 80–87CrossRefGoogle Scholar
  25. 25.
    Echenique F, Wilson A J, Yariv L (2016) Clearinghouses for two‐sided matching: An experimental study. Quant Econ 7(2): 449–482MathSciNetCrossRefGoogle Scholar
  26. 26.
    Baek SY et al (2009) Adaptive transmission scheme for mixed multicast and unicast traffic in cellular systems. IEEE Trans Veh Technol 58(6):2899–2907CrossRefGoogle Scholar
  27. 27.
    Lee SJ et al (2009) Efficient use of multicast and unicas channels for multicast services transmission. IEEE Trans Commun 59(5):1264–1267CrossRefGoogle Scholar
  28. 28.
    Ng DWK, Lo E, Schober R (2012) Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Trans Wirel Commun 11(9):3292–3304CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer SchoolYangtze UniversityJingzhouChina
  2. 2.School of Computer EngineeringHubei University of Arts and ScienceXiangyangChina

Personalised recommendations