Advertisement

Region-specific multi-attribute white mass estimation-based mammogram classification

  • T. V. Padmavathy
  • M. N. Vimalkumar
  • N. Sivakumar
Original Article
  • 61 Downloads

Abstract

The problem of mammographic image classification has been handled using various measures and features. The methods consider only small set of features to perform classification, but still the methods suffer to produce efficient classification accuracy. To overcome the problem of accuracy in mammographic image classification, a region-specific multi-attribute white mass estimation technique is proposed. The method uses the white mass value, density measure, and binding to identify the microcalcification. First, the peak white mass value is identified by visiting throughout the mammogram region. Second, the method splits the mammographic image into a number of small scale integral images. Third, for each integral image, the method computes multi-attribute white mass value, and based on computed white mass value, the method identifies the region being affected by the calcification. The method produces efficient result in mammogram image classification.

Keywords

Mammogram classification White mass value Peak white Region-based classification White density 

References

  1. 1.
    Manogaran G, Thota C, Lopez D, Vijayakumar V, Abbas KM, Sundarsekar R (2017a) Big data knowledge system in healthcare. In: Internet of things and big data technologies for next generation healthcare. Springer International Publishing, Berlin, pp 133–157Google Scholar
  2. 2.
    Kumar PM, Gandhi U, Varatharajan R, Manogaran G, Jidhesh R, Vadivel T (2017) Intelligent face recognition and navigation system using neural learning for smart security in Internet of Things. Clust Comput:1–12.  https://doi.org/10.1007/s10586-017-1323-4
  3. 3.
    Kumar PM, Gandhi UD (2017a) A novel three-tier Internet of Things architecture with machine learning algorithm for early detection of heart diseases. Comput Electr Eng.  https://doi.org/10.1016/j.compeleceng.2017.09.001
  4. 4.
    Gandhi UD, Kumar PM, Varatharajan R, Manogaran G, Sundarasekar R, Kadu S (2018) HIoTPOT: surveillance on IoT devices against recent threats. Wirel Pers Commun:1–16.  https://doi.org/10.1007/s11277-018-5307-3
  5. 5.
    Kumar PM, Gandhi UD (2017b) Enhanced DTLS with CoAP-based authentication scheme for the internet of things in healthcare application. J Supercomput:1–21.  https://doi.org/10.1007/s11227-017-2169-5
  6. 6.
    Priyan MK, Nath CG, Balan EV, Prabha KR, Jeyanthi R (2015) Desktop phishing attack detection and elimination using TSO program. In: Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), 2015 International Conference on (pp 198–201). IEEEGoogle Scholar
  7. 7.
    Lopez D, Manogaran G, Jagan J (2017) Modelling the H1N1 influenza using mathematical and neural network approaches. Biomed Res 28(8):1–5Google Scholar
  8. 8.
    Rawal BS, Vijayakumar V, Manogaran G, Varatharajan R, Chilamkurti N (2018) Secure disintegration protocol for privacy preserving cloud storage. Wirel Pers Commun:1–17.  https://doi.org/10.1007/s11277-018-5284-6
  9. 9.
    Manogaran G, Lopez D (2017a) Disease surveillance system for big climate data processing and dengue transmission. Int J Ambient Comput Intell (IJACI) 8(2):88–105CrossRefGoogle Scholar
  10. 10.
    Manogaran G, Lopez D (2017b) Spatial cumulative sum algorithm with big data analytics for climate change detection. Comput Electr Eng.  https://doi.org/10.1016/j.compeleceng.2017.04.006
  11. 11.
    Manogaran G, Lopez D (2017c) A Gaussian process based big data processing framework in cluster computing environment. Clust Comput:1–16.  https://doi.org/10.1007/s10586-017-0982-5
  12. 12.
    Manogaran G, Lopez D, Thota C, Abbas KM, Pyne S, Sundarasekar R (2017b) Big data analytics in healthcare Internet of Things. In: Innovative healthcare systems for the 21st century. Springer International Publishing, New York, pp 263–284Google Scholar
  13. 13.
    Varatharajan R, Vasanth K, Gunasekaran M, Priyan M, Gao XZ (2017a) An adaptive decision based kriging interpolation algorithm for the removal of high density salt and pepper noise in images. Comput Electr Eng.  https://doi.org/10.1016/j.compeleceng.2017.05.035
  14. 14.
    Varatharajan R, Manogaran G, Priyan MK, Sundarasekar R (2017b) Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Clust Comput:1–10.  https://doi.org/10.1007/s10586-017-0977-2
  15. 15.
    Varatharajan R, Manogaran G, Priyan MK (2017c) A big data classification approach using LDA with an enhanced SVM method for ECG signals in cloud computing. Multimed Tools Appl:1–21.  https://doi.org/10.1007/s11042-017-5318-1
  16. 16.
    Manogaran G, Varatharajan R, Lopez D, Kumar PM, Sundarasekar R, Thota C (2017c) A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting. Futur Gener Comput Syst.  https://doi.org/10.1016/j.future.2017.10.045
  17. 17.
    Thota C, Sundarasekar R, Manogaran G, Varatharajan R, Priyan MK (2018) Centralized fog computing security platform for IoT and cloud in healthcare system. In: Exploring the convergence of big data and the internet of things. IGI Global, USA, pp 141–154Google Scholar
  18. 18.
    Manogaran G, Vijayakumar V, Varatharajan R, Kumar PM, Sundarasekar R, Hsu CH (2017d) Machine learning based big data processing framework for Cancer diagnosis using hidden markov model and gm clustering. Wirel Pers Commun:1–18.  https://doi.org/10.1007/s11277-017-5044-
  19. 19.
    Lopez D, Sekaran G (2016) Climate change and disease dynamics—a big data perspective. Int J Infect Dis 45:23–24CrossRefGoogle Scholar
  20. 20.
    Manickam A, Devarasan E, Manogaran G, Priyan MK, Varatharajan R, Hsu CH, Krishnamoorthi R (2018) Score level based latent fingerprint enhancement and matching using SIFT feature. Multimed Tools Appl:1–21.  https://doi.org/10.1007/s11042-018-5633-1
  21. 21.
    Manogaran G, Lopez D (2016) Health data analytics using scalable logistic regression with stochastic gradient descent. Int J Adv Intell Paradigms 9:1–15Google Scholar
  22. 22.
    Manogaran G, Lopez D (2017d) A survey of big data architectures and machine learning algorithms in healthcare. Int J Biomed Eng Technol 25(2–4):182–211CrossRefGoogle Scholar
  23. 23.
    Manogaran G, Thota C, Lopez D (2018a) Human-computer interaction with big data analytics. In: HCI challenges and privacy preservation in big data security. IGI Global, India, pp 1–22Google Scholar
  24. 24.
    Lopez D, Manogaran G (2017) Parametric model to predict H1N1 influenza in Vellore District, Tamil Nadu, India. In: Handbook of Statistics, vol 37. Elsevier, Amsterdam, pp 301–316Google Scholar
  25. 25.
    Manogaran G, Varatharajan R, Priyan MK (2018b) Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system. Multimedia Tools Appl 77(4):4379–4399CrossRefGoogle Scholar
  26. 26.
    Varatharajan R, Manogaran G, Priyan MK, Balaş VE, Barna C (2017) Visual analysis of geospatial habitat suitability model based on inverse distance weighting with paired comparison analysis. Multimedia Tools Appl:1–21.  https://doi.org/10.1007/s11042-017-4768-9
  27. 27.
    Lopez D, Manogaran G (2016) Big data architecture for climate change and disease dynamics. In: Tomar GS et al (eds) The Human Element of Big Data: Issues, Analytics, and Performance. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • T. V. Padmavathy
    • 1
  • M. N. Vimalkumar
    • 2
  • N. Sivakumar
    • 3
  1. 1.Department of Electronics and Communication EngineeringR.M.K. Engineering CollegeGummidipoondiIndia
  2. 2.Department of Electronics and Communication EngineeringR.M.D. Engineering CollegeChennaiIndia
  3. 3.SITE SchoolVIT UniversityVelloreIndia

Personalised recommendations