Advertisement

Personal and Ubiquitous Computing

, Volume 22, Issue 3, pp 545–559 | Cite as

CRPD: a novel clustering routing protocol for dynamic wireless sensor networks

  • Shaoqing Wang
  • Jiguo Yu
  • Mohammed Atiquzzaman
  • Honglong Chen
  • Lina Ni
Original Article

Abstract

A wireless sensor network (WSN) consists of a large number of static or mobile, low-cost, and low-power sensor nodes. And energy is one of the most important factors that should be considered. In this paper, we propose clustering-based routing protocol for dynamic networks (CRPD) to reduce energy consumption and improve energy efficiency through clustering and routing algorithms. The basic idea is to periodically update the network topology and select the node with larger degree and high residual energy as the cluster head to be responsible for data aggregation and transmission. With the nodes moving, joining, and choosing the optimal clustering radius, the energy load of the whole network can be evenly distributed to each sensor node, which can significantly prolong the network lifetime. Extensive simulations show that CRPD is more energy-efficient than the existing protocols.

Keywords

Wireless sensor networks Dynamic Clustering Routing protocol Energy efficiency 

Notes

Acknowledgments

This work is supported by the NSF of China under grant nos. 61672321, 61771289 and 61373027.

References

  1. 1.
    Stattner E, Vidot N, Hunel P, Collard M (2012) Wireless sensor network for habitat monitoring: a counting heuristic. In: IEEE LCN workshops, pp 853–760Google Scholar
  2. 2.
    Jaigirdar FT, Islam MM (2016) A new cost-effective approach for battlefield surveillance in wireless sensor networks. In: IEEE networking systems and security, pp 1–6Google Scholar
  3. 3.
    Rajaram ML, Kougianos E, Mohanty SP, Sundaravadivel P (2016) A wireless sensor network simulation framework for structural health monitoring in smart cities. In: IEEE, international conference on consumer electronics, pp 78–82Google Scholar
  4. 4.
    Jelicic V, Magno M, Brunelli D, Paci G, Benini L (2013) Context-adaptive multimodal wireless sensor network for energy-efficient gas monitoring. IEEE Sens J 13(1):328–338CrossRefGoogle Scholar
  5. 5.
    Cheng S, Cai Z, Li J, Gao H (2017) Extracting kernel dataset from big sensory data in wireless sensor networks. IEEE Trans Knowl Data Eng 29(4):813–827CrossRefGoogle Scholar
  6. 6.
    Li J, Cheng S, Cai Z, Yu J, Wang C, Li Y (2017) Approximate holistic aggregation in wireless sensor networks. ACM Trans Sens Netw 11(2):1–24CrossRefGoogle Scholar
  7. 7.
    Cheng S, Cai Z, Li J, Gao H (2017) Extracting kernel dataset from big sensory data in wireless sensor networks. IEEE Trans Knowl Data Eng 29(4):813–827CrossRefGoogle Scholar
  8. 8.
    Zahhad MA, Ahmed SM, Sabor N, Sasaki S (2015) Mobile sink-based adaptive immune energy-efficient clustering protocol for improving the lifetime and stability period of wireless sensor networks. IEEE Sens J 15 (8):4576–4586CrossRefGoogle Scholar
  9. 9.
    Velmani R, Kaarthick B (2015) An efficient cluster-tree based data collection scheme for large mobile wireless sensor networks. IEEE Sens J 15(4):2377–2390CrossRefGoogle Scholar
  10. 10.
    Shen H, Li Z, Yu L, Qiu C (2014) Efficient data collection for large-scale mobile monitoring applications. IEEE Trans Parallel Distrib Syst 25(6):1424–1436CrossRefGoogle Scholar
  11. 11.
    Xu C, Liu Z, Xia J, Yu H (2015) An adaptive distributed re-clustering scheme for mobile wireless sensor networks. In: Wireless communications & signal processing (WCSP), pp 1–6Google Scholar
  12. 12.
    Chen L, Xu Z, Liu T, Chen C (2015) A dynamic clustering and routing protocol for multi-hop data collection in wireless sensor networks. In: IEEE CCC, pp 7811–7816Google Scholar
  13. 13.
    Jia D, Zhu H, Zou S, Hu P (2016) Dynamic cluster head selection method for wireless sensor network. IEEE Sens J 16(8):2746–2754CrossRefGoogle Scholar
  14. 14.
    Heinzelman WR, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks. In: International conference on system sciences, vol 18, p 8020Google Scholar
  15. 15.
    Heinzelman WB, Chandrakasan AP, Balakrishnan H (2002) Application-specific protocol architectures for wireless networks. IEEE Trans Wirel Commun 1(4):660–670CrossRefGoogle Scholar
  16. 16.
    Kumar D, Aseri T, Patel RB (2009) EEHC: energy efficient heterogeneous clustered scheme for wireless sensor networks. Comput Commun 32(4):662–667CrossRefGoogle Scholar
  17. 17.
    Bajaber F, Awan I (2011) Adaptive decentralized re-clustering protocol for wireless sensor networks. J Comput Syst Sci 77(2):282–292MathSciNetCrossRefGoogle Scholar
  18. 18.
    Younis O, Fahmy S (2004) HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans Mob Comput 3(4):366–379CrossRefGoogle Scholar
  19. 19.
    Jin Y, Wei D, Vural S, Gluhak A, Moessner KM (2011) A distributed energy-efficient re-clustering solution for wireless sensor networks. In: Proceedings of the IEEE global telecommunications conference (GLOBECOM), pp 1–6Google Scholar
  20. 20.
    Chen YC, Wen CY (2013) Distributed clustering with directional antennas for wireless sensor networks. IEEE Sens J 13(6):2166–2180CrossRefGoogle Scholar
  21. 21.
    Yu J, Qi Y, Wang G (2011) An energy-driven unequal clustering protocol for heterogeneous wireless sensor networks. J Control Theory Appl 9(1):133–139MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yu J, Qi Y, Wang G, Guo Q, Gu X (2011) An energy-aware distributed unequal clustering protocol for wireless sensor networks. Int J Distrib Sens Netw 2011(3):876–879Google Scholar
  23. 23.
    Yu J, Qi Y, Wang G, Gu X (2012) A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution. AEÜ—Int J Electron Commun 66(1):54–61Google Scholar
  24. 24.
    Yu J, Feng L, Jia L, Gu X, Yu D (2014) A local energy consumption prediction-based clustering protocol for wireless sensor networks. Sensors 14(12):23017–40CrossRefGoogle Scholar
  25. 25.
    Jin Y, Wang L, Kim Y, Yang X (2008) EEMC: an energy-efficient multi-level clustering algorithm for large-scale wireless sensor networks. Comput Telecommun Netw 52(3):542–562CrossRefMATHGoogle Scholar
  26. 26.
    Almalkawi I, Zapata M, AlKaraki J (2012) A cross-layer-based clustered multipath routing with QoS-aware scheduling for wireless multimedia sensor networks. Int J Distrib Sens Netw 2012(12):184–195Google Scholar
  27. 27.
    Yang W, Fu Z, Kim J, Park M (2007) An adaptive dynamic cluster-based protocol for target tracking in wireless sensor networks. In: APWeb/WAIM, pp 157–167Google Scholar
  28. 28.
    Wang F, Bai X, Guo B, Liu C (2016) Dynamic clustering in wireless sensor network for target tracking based on the fisher information of modified Kalman filter. In: Systems and Informatics (ICSAI), pp 696–700Google Scholar
  29. 29.
    Sharma S, Jena SK (2015) Cluster based multipath routing protocol for wireless sensor networks. Comput Sci 45(2):14–20Google Scholar
  30. 30.
    Shi Q, Huo H, Fang T, Li D (2009) A 3D node localization scheme for wireless sensor networks. IEICE Electron Express 6(3):167–172CrossRefGoogle Scholar
  31. 31.
    Chuang PJ, Jiang YJ (2014) Effective neural network-based node localisation scheme for wireless sensor networks. IET Wirel Sens Syst 4(2):97–103CrossRefGoogle Scholar
  32. 32.
    Manjeshwar A, Agrawal DP (2001) TEEN: a routing protocol for enhanced efficiency in wireless sensor networks. In: Proceedings of IPDPS Workshops, pp 2009–2015Google Scholar
  33. 33.
    Ganesan D, Govindan R, Shenker S, Estrin D (2001) Highly-resilient, energy-efficient multipath routing in wireless sensor networks. ACM Sigmobile Mobile Comput Commun Rev 5(4):11–25CrossRefGoogle Scholar
  34. 34.
    Ren X, Liang H, Wang Y (2008) Multipath routing based on ant colony system in wireless sensor networks. Comput Sci Softw Eng 3:202–205Google Scholar
  35. 35.
    Yang J, Xu M, Zhao W, Xu B (2010) A multipath routing protocol based on clustering and ant colony optimization for wireless sensor networks. Sensors 10(5):4521–40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Shaoqing Wang
    • 1
  • Jiguo Yu
    • 1
  • Mohammed Atiquzzaman
    • 2
  • Honglong Chen
    • 3
  • Lina Ni
    • 4
  1. 1.School of Information Science and EngineeringQufu Normal UniversityRizhaoChina
  2. 2.School of Computer ScienceUniversity of OklahomaNormanUSA
  3. 3.College of Information and Control EngineeringChina University of PetroleumQingdaoChina
  4. 4.College of Computer Science and EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations