User social activity-based routing for cognitive radio networks

  • Junling Lu
  • Zhipeng Cai
  • Xiaoming Wang
  • Lichen Zhang
  • Peng Li
  • Zaobo He
Original Article

Abstract

The social activities of Primary Users (PUs) and Secondary Users (SUs) affect actual accessible whitespace in Cognitive Radio Networks (CRNs). However, the impacts of primary activities on available whitespace have been extensively investigated due to the dominating priority of PUs, while the impacts of secondary activities on actual accessible whitespace have been ignored. Therefore, we propose to incorporate the primary and secondary activities in the analysis and decision of the accessible whitespace, namely, both the dominance of PUs over SUs and the competitions among SUs are simultaneously taken into account. Specifically, we first approximate primary activity probability based on the real datasets of mobile phone usage records, then the spectrum opportunity between a pair of communication SUs is deduced based on primary activities. Next, we infer the access probability limit of SUs successfully accessing the whitespace according to the primary activity probability, and depict the secondary activity probability from the views of social activity patterns and social networks respectively. Furthermore, the actual accessible probability of whitespace is given by introducing the competitions among SUs. Finally, a greedy routing algorithm, considering the accessible whitespace and the distance to the destination, is proposed to verify our idea. The experiment results based on the real datasets demonstrate the correctness of our analysis and the advantages of the proposed algorithm.

References

  1. 1.
    Akyildiz I F, Lee W-Y, Vuran M C, Mohanty S (2006) Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput Netw 50(13):2127–2159CrossRefMATHGoogle Scholar
  2. 2.
    FCC (2003) Et docket no 03-222 notice of proposed rule making and orderGoogle Scholar
  3. 3.
    Wang S, Liu M, Cheng X, Song M (2012) Routing in pocket switched networks. IEEE Wirel Commun 19(1):67–73CrossRefGoogle Scholar
  4. 4.
    Wang S, Liu M, Cheng X, Li Z, Huang J, Chen B (2013) Opportunistic routing in intermittently connected mobile p2p networks. IEEE J Sel Areas Commun 31(9):369–378CrossRefGoogle Scholar
  5. 5.
    Masonta M T, Mzyece M, Ntlatlapa N (2013) Spectrum decision in cognitive radio networks: a survey. IEEE Commun Surv Tutor 15(3):1088–1107CrossRefGoogle Scholar
  6. 6.
    Song M, Xin C, Zhao Y, Cheng X (2012) Dynamic spectrum access: from cognitive radio to network radio. IEEE Wirel Commun 19(1):23–29CrossRefGoogle Scholar
  7. 7.
    Lu J, Cai Z, Wang X, Zhang L, Li P, He Z (2016) Primary and secondary social activity aware routing for cognitive radio networks. In: 2016 Proceedings of international conference on identification, information and knowledge in the internet of things (IIKI), pp 311–316Google Scholar
  8. 8.
    Zhu Y, Xu B, Shi X, Wang Y (2013) A survey of social-based routing in delay tolerant networks: positive and negative social effects. IEEE Commun Surv Tutor 15(1):387–401CrossRefGoogle Scholar
  9. 9.
    Han M, Yan M, Li J, Ji S, Li Y (2014) Neighborhood-based uncertainty generation in social networks. J Comb Optim 28(3):561–576MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Zhu H, Xiao F, Sun L, Xie X, Yang P, Wang R (2017) Robust and passive motion detection with cots wifi devices. Tsinghua Sci Technol 22(4):345–359CrossRefGoogle Scholar
  11. 11.
    Cardoso J V M, Queiroz W J L, Liu H, Alencar M S (2017) On the performance of the energy detector subject to impulsive noise in κμ, αμ, and ημ fading channels. Tsinghua Sci Technol 22(4):360–367CrossRefGoogle Scholar
  12. 12.
    Cai Z, Ji S, He J, Bourgeois AG (2012) Optimal distributed data collection for asynchronous cognitive radio networks. In: 2012 IEEE 32nd international conference on distributed computing systems, pp 245–254Google Scholar
  13. 13.
    Cai Z, Ji S, He J, Wei L, Bourgeois A G (2014) Distributed and asynchronous data collection in cognitive radio networks with fairness consideration. IEEE Trans Parallel Distrib Syst 25(8):2020–2029CrossRefGoogle Scholar
  14. 14.
    Ren W, Zhao Q, Swami A (2009) Power control in cognitive radio networks: how to cross a multi-lane highway. IEEE J Sel Areas Commun 27(7):1283–1296CrossRefGoogle Scholar
  15. 15.
    Ji S, Cai Z, He J S, Beyah R (2015) Primary social behavior aware routing and scheduling for cognitive radio networks. In: 12th annual IEEE international conference on sensing, communication, and networking (SECON), pp 417–425Google Scholar
  16. 16.
    Ji S, Cai Z, Han M, Beyah R (2015) Whitespace measurement and virtual backbone construction for cognitive radio networks: from the social perspective. In: 12th annual IEEE international conference on sensing, communication, and networking (SECON), pp 435–443Google Scholar
  17. 17.
    Wu H, Yu R, Zhang Y (2014) Exploiting primary user social features for reliability-driven routing in multi-hop cognitive radio networks. In: IEEE international conference on communications (ICC), pp 215–220Google Scholar
  18. 18.
    Lee W Y, Akyldiz I F (2011) A spectrum decision framework for cognitive radio networks. IEEE Trans Mob Comput 10(2):161–174CrossRefGoogle Scholar
  19. 19.
    Canberk B, Akyildiz I F, Oktug S (2011) Primary user activity modeling using first-difference filter clustering and correlation in cognitive radio networks. IEEE/ACM Trans Netw 19(1):170–183CrossRefGoogle Scholar
  20. 20.
    Saleem Y, Rehmani M H (2014) Primary radio user activity models for cognitive radio networks: a survey. J Netw Comput Appl 43:1–16CrossRefGoogle Scholar
  21. 21.
    Ali A, Piran M J, Kim H, Yun J, Suh D Y (2015) Pad-mac: primary user activity-aware distributed mac for multi-channel cognitive radio networks. Sensors 15(4):7658–7690CrossRefGoogle Scholar
  22. 22.
    Cai Z, Duan Y, Bourgeois A G (2015) Delay efficient opportunistic routing in asynchronous multi-channel cognitive radio networks. J Comb Optim 29(4):815–835MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Zhang L, Cai Z, Li P, Wang X (2016) Exploiting spectrum availability and quality in routing for multi-hop cognitive radio networks. In: 11th international conference on wireless algorithms, systems, and applications (WASA), pp 283–294Google Scholar
  24. 24.
    Zhang L, Cai Z, Li P, Wang L, Wang X (2017) Spectrum-availability based routing for cognitive sensor networks. IEEE Access 5:4448–4457CrossRefGoogle Scholar
  25. 25.
    Huang J, Wang S, Cheng X, Bi J (2016) Big data routing in d2d communications with cognitive radio capability. IEEE Wirel Commun 23(4):45–51CrossRefGoogle Scholar
  26. 26.
    Huang J, Wang S, Cheng X, Liu M, Li Z, Chen B (2014) Mobility-assisted routing in intermittently connected mobile cognitive radio networks. IEEE Trans Parallel Distrib Syst 25(11):2956–2968CrossRefGoogle Scholar
  27. 27.
    Yan M, Han M, Ai C, Cai Z, Li Y (2016) Data aggregation scheduling in probabilistic wireless networks with cognitive radio capability. In: 2016 IEEE global communications conference (GLOBECOM), pp 1–6Google Scholar
  28. 28.
    Duan Z, Yan M, Cai Z, Wang X, Han M, Li Y (2016) Truthful incentive mechanisms for social cost minimization in mobile crowdsourcing systems. Sensors 16(4):481CrossRefGoogle Scholar
  29. 29.
    Wang Q, Ye B, Lu S, Guo S (2014) A truthful QoS-aware spectrum auction with spatial reuse for large-scale networks. IEEE Trans Parallel Distrib Syst 25(10):2499–2508CrossRefGoogle Scholar
  30. 30.
    Huang H, Sun Y E, Li X Y, Chen S, Xiao M, Huang L (2015) Truthful auction mechanisms with performance guarantee in secondary spectrum markets. IEEE Trans Mob Comput 14(6):1315–1329CrossRefGoogle Scholar
  31. 31.
    Li Z, Li B, Zhu Y (2015) Designing truthful spectrum auctions for multi-hop secondary networks. IEEE Trans Mob Comput 14(2):316–327CrossRefGoogle Scholar
  32. 32.
    Kasbekar G S, Sarkar S (2016) Spectrum white space trade in cog- nitive radio networks. IEEE Trans Autom Control 61(3):585–600CrossRefMATHGoogle Scholar
  33. 33.
    Xu C, Sheng M, Yang C, Wang X, Wang L (2014) Pricing-based multiresource allocation in ofdma cognitive radio networks: an energy efficiency perspective. IEEE Trans Veh Technol 63(5):2336–2348CrossRefGoogle Scholar
  34. 34.
    Hassan M R, Karmakar G, Kamruzzaman J, Srinivasan B (2015) A comprehensive spectrum trading scheme based on market competition, reputation and buyer specific requirements. Comput Netw 84:17–31CrossRefGoogle Scholar
  35. 35.
    Zhong W, Xu Y, Wang J, Li D, Tianfield H (2014) Adaptive mechanism design and game theoretic analysis of auction-driven dynamic spectrum access in cognitive radio networks. EURASIP J Wirel Commun Netw 2014:44CrossRefGoogle Scholar
  36. 36.
    Liu Z, Li C (2017) On spectrum allocation in cognitive radio networks: a double auction-based methodology. Wirel Netw 23 (2): 453–466CrossRefGoogle Scholar
  37. 37.
    John J, Arianayagam N (2017) The detour domination number of a graph. Discret Math Algorithms Appl 9(1):1750006MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Balamurugan S (2017) Changing and unchanging isolate domination: edge removal. Discret Math Algorithms Appl 9(1):1750003MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    McDiarmid A, Irvine J, Bell S, Banford J (2011) CRAWDAD dataset strath/nodobo (v. 2011-03-23). Downloaded from http://crawdad.org/strath/nodobo/20110323
  40. 40.
    Ficek M (2012) CRAWDAD dataset ctu/personal (v. 2012-03-15). Downloaded from http://crawdad.org/ctu/personal/20120315
  41. 41.
    Willkomm D, Machiraju S, Bolot J, Wolisz A (2009) Primary user behavior in cellular networks and implications for dynamic spectrum access. IEEE Commun Mag 47(3):88–95CrossRefGoogle Scholar
  42. 42.
    Lu J, Wang X, Zhang L (2014) Signal power random fading based interference-aware routing for wireless sensor networks. Wirel Netw 20(7):1715–1727CrossRefGoogle Scholar
  43. 43.
    Yu J, Qi Y, Wang G, Gu X (2012) A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution. {AEU}—Int J Electron Commun 66(1):54–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Junling Lu
    • 1
    • 2
  • Zhipeng Cai
    • 3
  • Xiaoming Wang
    • 1
    • 2
  • Lichen Zhang
    • 1
    • 2
  • Peng Li
    • 1
    • 2
  • Zaobo He
    • 3
  1. 1.Key Laboratory for Modern Teaching Technology, Ministry of EducationXi’anChina
  2. 2.School of Computer ScienceShaanxi Normal UniversityXi’anChina
  3. 3.Department of Computer ScienceGeorgia State UniversityAtlantaUSA

Personalised recommendations