Skip to main content
Log in

Semantic enrichment of spatio-temporal trajectories for worker safety on construction sites

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Thousands of fatalities are reported from the construction industry every year and a high percentage of them are due to the unsafe worker movements which resulted in falling from heights, transportation accidents, exposure to harmful environments, and striking against or being struck by the moving equipment. To reduce such fatalities, a system is proposed to monitor worker movements on a construction site by collecting their raw spatio-temporal trajectory data and enriching it with the relevant semantic information. To acquire the trajectories, the use of an indoor positioning system (IPS) is considered. Bluetooth beacons are used for collecting spatio-temporal information of the building users. By means of an Android-based mobile application, neighboring beacons’ signals are selected, and a geo-localization technique is performed to get the unique pairs of users’ location coordinates. After pre-processing this collected data, three semantic enrichment techniques are used to construct semantically enriched trajectories which are as follows: (1) enrichment with the semantic points which maps site location identification to the trajectory points; (2) enrichment with the semantic lines which relies on the speed-based segmentation approach to infer user modes of transportation; (3) enrichment with the semantic region for mapping a complete trajectory on an actual building or a construction site zone. The proposed system will help in extracting multifaceted trajectory characteristics and generates semantic trajectories to enable the desired semantic insights for better understanding of the underlying meaningful worker movements using the contextual data related to the building environment. Generated semantic trajectories will help health and safety (H&S) managers in making improved decisions for monitoring and controlling site activities by visualizing site-zones’ density to avoid congestion, proximity analysis to prevent workers collisions, identifying unauthorized access to hazardous areas, and monitoring movements of workers and machinery to reduce transportation accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Shao B, Hu Z, Liu Q, Chen S, He W (2018) Fatal accident patterns of building construction activities in China. Saf Sci 111:253–263 (In Press). https://doi.org/10.1016/j.ssci.2018.07.019

    Article  Google Scholar 

  2. Poh CQ, Ubeynarayana CU, Goh YM (2018) Safety leading indicators for construction sites: a machine learning approach. Autom Constr 93:375–386. https://doi.org/10.1016/j.autcon.2018.03.022

    Article  Google Scholar 

  3. Stats.bls.gov. (2017) Census of fatal occupational injuries (CFOI) - current and revised data. http://stats.bls.gov/iif/oshcfoi1.htm. Accessed 28 September 2017

  4. Fang W, Ding L, Luo H, Love PE (2018) Falls from heights: a computer vision-based approach for safety harness detection. Autom Constr 91:53–61. https://doi.org/10.1016/j.autcon.2018.02.018

    Article  Google Scholar 

  5. Zhou C, Ding LY (2017) Safety barrier warning system for underground construction sites using internet-of-things technologies. Autom Constr 83:372–389. https://doi.org/10.1016/j.autcon.2017.07.005

    Article  Google Scholar 

  6. Li H, Yang X, Skitmore M, Wang F, Forsythe P (2017) Automated classification of construction site hazard zones by crowd-sourced integrated density maps. Autom Constr 81:328–339. https://doi.org/10.1016/j.autcon.2017.04.007

    Article  Google Scholar 

  7. Pradhananga N, Teizer J (2013) Automatic spatio-temporal analysis of construction site equipment operations using GPS data. Autom Constr 29:107–122. https://doi.org/10.1016/j.autcon.2012.09.004

    Article  Google Scholar 

  8. Yu Y, Guo H, Ding Q, Li H, Skitmore M (2017) An experimental study of real-time identification of construction workers’ unsafe behaviors. Autom Constr 82:193–206. https://doi.org/10.1016/j.autcon.2017.05.002

    Article  Google Scholar 

  9. Park MW, Brilakis I (2016) Continuous localization of construction workers via integration of detection and tracking. Autom Constr 72:129–142. https://doi.org/10.1016/j.autcon.2016.08.039

    Article  Google Scholar 

  10. Teizer J, Cheng T (2015) Proximity hazard indicator for workers-on-foot near miss interactions with construction equipment and geo-referenced hazard areas. Autom Constr 60:58–73. https://doi.org/10.1016/j.autcon.2015.09.003

    Article  Google Scholar 

  11. Awolusi I, Marks E, Hallowell M (2018) Wearable technology for personalized construction safety monitoring and trending: review of applicable devices. Autom Constr 85:96–106. https://doi.org/10.1016/j.autcon.2017.10.010

    Article  Google Scholar 

  12. Cai H, Andoh AR, Su X, Li S (2014) A boundary condition based algorithm for locating construction site objects using RFID and GPS. Adv Eng Inform 28(4):455–468. https://doi.org/10.1016/j.aei.2014.07.002

    Article  Google Scholar 

  13. Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol 6(3):1–41. https://doi.org/10.1145/2743025

    Article  Google Scholar 

  14. Albanna BH, Moawad IF, Moussa SM, Sakr MA (2015) Semantic Trajectories: A Survey from Modeling to Application. In: Semantic trajectories: a survey from modeling to application. Information fusion and geographic information systems. Springer International Publishing, pp 59–76. https://doi.org/10.1007/978-3-319-16667-4_4

    Google Scholar 

  15. Li H, Lu M, Hsu SC, Gray M, Huang T (2015) Proactive behavior-based safety management for construction safety improvement. Saf Sci 75:107–117. https://doi.org/10.1016/j.ssci.2015.01.013

    Article  Google Scholar 

  16. Baslyman M, Rezaee R, Amyot D, Mouttham A, Chreyh R, Geiger G, Stewart A, Sader S (2015) Real-time and location-based hand hygiene monitoring and notification: proof-of-concept system and experimentation. Pers Ubiquit Comput 19:667–688. https://doi.org/10.1007/s00779-015-0855-y

    Article  Google Scholar 

  17. Lopez-Novoa U, Aguilera U, Emaldi M, López-de-Ipina D, Pérez-de-Albeniz I, Valerdi D, Iturricha I, Arza E (2017) Overcrowding detection in indoor events using scalable technologies. Pers Ubiquit Comput 21(3):507–519. https://doi.org/10.1007/s00779-017-1012-6

    Article  Google Scholar 

  18. Spaccapietra S, Parent C, Damiani ML, de Macedo JA, Porto F, Vangenot C (2008) A conceptual view on trajectories. Data Knowl Eng 65(1):126–146. https://doi.org/10.1016/j.datak.2007.10.008

    Article  Google Scholar 

  19. Arslan M, Cruz C, Roxin AM, Ginhac D (2018) Spatio-temporal analysis of trajectories for safer construction sites. Smart and Sustainable Built Environ 7(1):80–100. https://doi.org/10.1108/SASBE-10-2017-0047

    Article  Google Scholar 

  20. Guc B, May M, Saygin Y, Körner C (2008) Semantic annotation of GPS trajectories. Proceedings of the eleventh AGILE international conference on geographic information science. Girona, Spain, pp 1–9

    Google Scholar 

  21. Yan Z, Giatrakos N, Katsikaros V, Pelekis N, Theodoridis Y (2011) SeTraStream: semantic-aware trajectory construction over streaming movement data. Advances in spatial and temporal databases. Lect Notes Comput Sci 6849:367–385. https://doi.org/10.1007/978-3-642-22922-0_22

    Article  Google Scholar 

  22. Buchin M, Driemel A, Kreveld MV, Sacristan V (2010) An algorithmic framework for segmenting trajectories based on Spatio-Temporal Criteria. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems New York, NY, USA 202–211. https://doi.org/10.1145/1869790.1869821

  23. Dabiri S, Heaslip K (2018) Inferring transportation modes from GPS trajectories using a convolutional neural network. Transportation Res. Part C: Emerg Technol 86:360–371. https://doi.org/10.1016/j.trc.2017.11.021

    Article  Google Scholar 

  24. Balzano W, Sorbo MRD (2014) SeTra: a smart framework for GPS trajectories’ segmentation. International Conference on Intelligent Networking and Collaborative Systems Salerno, Italy 362–368. https://doi.org/10.1109/INCoS.2014.106

  25. Sankararaman S, Agarwal PK, Mølhave T, Pan J, Boedihardjo AP (2013) Model-driven matching and segmentation of trajectories. Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems New York, NY, USA, pp 234–243. https://doi.org/10.1145/2525314.2525360

  26. Panagiotakis C, Pelekis N, Kopanakis I, Ramasso E, Theodoridis Y (2012) Segmentation and sampling of moving object trajectories based on representativeness. IEEE Trans Knowl Data Eng 24(7):1328–1343. https://doi.org/10.1109/TKDE.2011.39

    Article  Google Scholar 

  27. Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2011) SeMiTri: a framework for semantic annotation of heterogeneous trajectories. Proceedings of the 14th International Conference on Extending Database Technology (EDBT/ICDT '11), ACM, New York, NY, USA :259–270. https://doi.org/10.1145/1951365.1951398

  28. Yan Z (2011) Semantic trajectories: computing and understanding mobility data. Doctoral dissertation. Lausanne, EPFL. https://doi.org/10.5075/epfl-thesis-5144

  29. Wu F, Li Z, Lee WC, Wang H, Huang Z (2015) Semantic annotation of mobility data using social media. Proceedings of the 24th International Conference on World Wide Web. Florence, Italy, pp 1253–1263. https://doi.org/10.1145/2736277.2741675

    Book  Google Scholar 

  30. Furletti B, Cintia P, Renso C, Spinsanti L (2013) Inferring human activities from GPS tracks. Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing (UrbComp '13), Chicago, Illinois, USA;1–8. https://doi.org/10.1145/2505821.2505830

  31. Nogueira TP, Braga RB, de Oliveira CT, Martin H (2018) FrameSTEP: a framework for annotating semantic trajectories based on episodes. J of Expert Systems with Appl 92:533–545. https://doi.org/10.1016/j.eswa.2017.10.004

    Article  Google Scholar 

  32. de Graaff V, de By RA, van Keulen M (2016) Automated semantic trajectory annotation with indoor point-of-interest visits in urban areas. Proceedings of the 31st Annual ACM Symposium on Applied Computing (SAC '16), Pisa, Italy: 552–559. https://doi.org/10.1145/2851613.2851709

  33. Fileto R, May C, Renso C, Pelekis N, Klein D, Theodoridis Y (2015) The Baquara2 knowledge-based framework for semantic enrichment and analysis of movement data. Data Knowl Eng 98:104–122. https://doi.org/10.1016/j.datak.2015.07.010

    Article  Google Scholar 

  34. Wu F, Wang H, Li Z, Lee WC, Huang Z (2015) SemMobi: a semantic annotation system for mobility data. Proceedings of the 24th International Conference on World Wide Web (WWW '15 Companion), Florence, Italy: 255–258. https://doi.org/10.1145/2740908.2742837

  35. Wan C, Zhu Y, Yu J, Shen Y (2018) SMOPAT: mining semantic mobility patterns from trajectories of private vehicles. Inf Sci 429:12–25. https://doi.org/10.1016/j.ins.2017.10.043

    Article  MathSciNet  Google Scholar 

  36. Cai G, Lee K, Lee I (2018) Mining mobility patterns from geotagged photos through semantic trajectory clustering. Cybern Syst 49(4):234–256. https://doi.org/10.1080/01969722.2018.1448236

    Article  Google Scholar 

  37. Heijden K (2005) Scenarios: the art of strategic conversation, 2nd edn. John Wiley & Sons, Hoboken

    Google Scholar 

  38. Carroll JM (2009) Scenario based design. Handbook of human-computer interaction, 2nd edn. North-Holland, pp 383–406. https://doi.org/10.1016/B978-044481862-1.50083-2

    Chapter  Google Scholar 

  39. Kontakt (2018) “Beacons,” available at:https://kontakt.io/ble-beacons-tags/. Last Accessed 05 Dec 2018

  40. Lu CT, Lei PR, Peng WC, Su J (2011) A framework of mining semantic regions from trajectories. In: International Conference on Database Systems for Advanced Applications. Springer, Berlin, Heidelberg, pp 193–207. https://doi.org/10.1007/978-3-642-20149-3_16

    Chapter  Google Scholar 

  41. Ashbrook D, Starner T (2003) Using GPS to learn significant locations and predict movement across multiple users. Pers Ubiquit Comput 7(5):275–286. https://doi.org/10.1007/s00779-003-0240-0

    Article  Google Scholar 

  42. Palma AT, Bogorny V, Kuijpers B, Alvares LO (2008) A clustering-based approach for discovering interesting places in trajectories. Proceedings of the ACM symposium on Applied computing, New York, NY, USA: 863–868. https://doi.org/10.1145/1363686.1363886

  43. Cruz C (2017) Semantic trajectory modeling for dynamic built environments, IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp 468–476

  44. Fileto R, Krüger M, Pelekis N, Theodoridis Y, Renso C (2013) Baquara: a holistic ontological framework for movement analysis using linked data. International Conference on Conceptual Modeling, Springer, Berlin, Heidelberg, pp 342–355

    Chapter  Google Scholar 

  45. Bogorny V, Renso C, de Aquino AR, de Lucca Siqueira F, Alvares LO (2014) Constant–a conceptual data model for semantic trajectories of moving objects. Trans GIS 18(1):66–88

    Article  Google Scholar 

  46. Mohammadi MS, Isabelle M, Thérèse L, Christophe F (2017) A semantic modeling of moving objects data to detect the remarkable behavior. AGILE, Wageningen

    Google Scholar 

  47. Yan Z, Parent C, Spaccapietra S, Chakraborty D (2010) A hybrid model and computing platform for spatio-semantic trajectories. Extended Semantic Web Conference: 60–75, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13486-9_5

    Google Scholar 

  48. Zhang S, Teizer J, Pradhanang N (2015) Global positioning system data to model and visualize workspace density in construction safety planning. Proceedings of the 32nd International Symposium on Automation and Robotics in Construction, Oulu, Finland, pp 1–7. https://doi.org/10.22260/ISARC2015/0041

  49. Costin AM, Teizer J, Schoner B (2015) RFID and BIM-enabled worker location tracking to support real-time building protocol and data visualization. Journal of Information Technology in Construction (ITcon) 20(29):495–517 http://www.itcon.org/2015/29

    Google Scholar 

  50. Mahmoud H, Akkari N (2016) Shortest path calculation: a comparative study for location-based recommender system. World Symposium on Computer Applications & Research (WSCAR), Cairo, pp 1–5. https://doi.org/10.1109/WSCAR.2016.16

  51. Heng L, Shuang D, Skitmore M, Qinghua H, Qin Y (2016) Intrusion warning and assessment method for site safety enhancement. Saf Sci 84:97–107. https://doi.org/10.1016/j.ssci.2015.12.004

    Article  Google Scholar 

  52. Carbonari A, Giretti A, Naticchia B (2011) A proactive system for real-time safety management in construction sites. Autom Constr 20(6):686–698. https://doi.org/10.1016/j.autcon.2011.04.019

    Article  Google Scholar 

  53. Arslan M, Cruz C, Ginhac D (2018) Semantic enrichment of spatio-temporal trajectories for worker safety on construction sites. Procedia Computer Science 130:271–278. https://doi.org/10.1016/j.procs.2018.04.039

    Article  Google Scholar 

  54. Riaz Z, Arslan M, Kiani AK, Azhar S (2014) CoSMoS: a BIM and wireless sensor based integrated solution for worker safety in confined spaces. Autom Constr 45:96–106. https://doi.org/10.1016/j.autcon.2014.05.010

    Article  Google Scholar 

  55. Autodesk (2018) [online] Available at: http://paulaubin.com/_downloads/2017_AU/BIM128338-Aubin-AU2017.pdf. Accessed 13 Sep 2018

Download references

Acknowledgements

The authors thank the Conseil Régional de Bourgogne-Franche-Comté, the French government for their funding, SATT Grand-Est, and IUT-Dijon (http://iutdijon.u-bourgogne.fr). The authors also want to thank Orval Touitou for his technical assistance to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arslan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, M., Cruz, C. & Ginhac, D. Semantic enrichment of spatio-temporal trajectories for worker safety on construction sites. Pers Ubiquit Comput 23, 749–764 (2019). https://doi.org/10.1007/s00779-018-01199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-018-01199-5

Keywords

Navigation