Personal and Ubiquitous Computing

, Volume 18, Issue 5, pp 1169–1186 | Cite as

VisPorter: facilitating information sharing for collaborative sensemaking on multiple displays

  • Haeyong Chung
  • Chris North
  • Jessica Zeitz Self
  • Sharon Chu
  • Francis Quek
Original Article


The multiplicity of computing and display devices currently available presents new opportunities for how visual analytics is performed. One of the significant inherent challenges that comes with the use of multiple and varied types of displays for visual analytics is the sharing and subsequent integration of information among different devices. Multiple devices enable analysts to employ and extend visual space for working with visualizations, but this requires users to switch intermittently between activities and foci of interest over different workspaces. We present a visual analytics system, VisPorter, developed for use in a multiple display and device environment, and a user study that explores the usage and benefits of this system. VisPorter enables seamless cross-device activity through lightweight touch interactions, and allows multiple displays and devices to be fluidly connected for sensemaking.


Display ecology Collaborative sensemaking Visual analytics Text analytics Multiple displays 



This research is partially supported by NSF Grant CNS-1059398 and by grants from NIA and L-3 STRATIS. This paper is dedicated to the memory of our friend and supporter Chris Heasly.


  1. 1.
    Jetter H-C, Zöllner M, Gerken J, Reiterer H (2012) Design and implementation of post-WIMP distributed user interfaces with ZOIL. Int J Hum Comput Interact 28(11):737–747CrossRefGoogle Scholar
  2. 2.
    Huang EM, Mynatt ED, Trimble JP (2006) Displays in the wild: understanding the dynamics and evolution of a display ecology. In: Proceedings of the 4th international conference on pervasive computing, pp 321–336Google Scholar
  3. 3.
    Marquardt N, Diaz-Marino R, Boring, S, Greenberg, S (2011) The proximity toolkit: prototyping proxemic interactions in ubiquitous computing ecologies. In: Proceedings of ACM UIST’11, pp 315–326Google Scholar
  4. 4.
    Coughlan T, Collins TD, Adams A, Rogers Y, Haya PA, Martín E (2012) The conceptual framing, design and evaluation of device ecologies for collaborative activities. Int J Hum Comput Stud 70(10):765–779CrossRefGoogle Scholar
  5. 5.
    Geyer F, Pfeil U, Höchtl A, Budzinski J, Reiterer H (2011) Designing reality-based interfaces for creative group work. In: Proceedings of ACM creativity and cognition 2011, pp 165–174Google Scholar
  6. 6.
    Dearman D, Pierce JS (2008) It’s on my other computer! computing with multiple devices. In: Proceeding of ACM CHI’08, pp 767–776Google Scholar
  7. 7.
    Everitt K, Shen C, Ryall K, Forlines C (2006) MultiSpace: enabling electronic document micro-mobility in table-centric, multi-device environments. In: Proceedings of the first IEEE international workshop on horizontal interactive human–computer systems, pp 27–34Google Scholar
  8. 8.
    Nacenta MA, Gutwin C, Aliakseyeu D, Subra-manian S (2009) There and back again: cross-display object movement in multi-display environments. Hum Comput Interact 24(1):170–229CrossRefGoogle Scholar
  9. 9.
    Streitz NA, Geißler J, Holmer T, Konomi S, Müller-Tomfelde C, Reischl W, Rexroth P, Seitz P, Steinmetz R (1999) i-LAND: an interactive landscape for creativity and innovation. In: Proceedings of ACM CHI’99, pp 120–127Google Scholar
  10. 10.
    Terrenghi L, Quigley A, Dix A (2009) A taxonomy for and analysis of multi-person-display ecosystems. Pers Ubiquitous Comput 13(8):583–598CrossRefGoogle Scholar
  11. 11.
    Wright W, Schroh D, Proulx P, Skaburskis A, Cort B (2006) The sandbox for analysis: concepts and methods. In: Proceedings of ACM CHI’06, pp 801–810Google Scholar
  12. 12.
    Andrews C, North C (2012) Analyst’s workspace: an embodied sensemaking environment for large, high-resolution displays. In: Proceedings of IEEE VAST’12, pp 123–131Google Scholar
  13. 13.
    Stasko J, Gorg C, Liu Z (2008) Jigsaw: supporting investigative analysis through interactive visualization. Inf Vis 7:118–132CrossRefGoogle Scholar
  14. 14.
    Chung H, Seungwon Y, Massjouni N, Andrews C, Kanna R, North C (2010) VizCept: supporting synchronous collaboration for constructing visualizations in intelligence analysis. In: Proceedings of IEEE VAST’10, pp 107–114Google Scholar
  15. 15.
    Isenberg P, Tang A, Carpendale S (2008) An exploratory study of visual information analysis. In: Proceedings of ACM CHI’08, pp 1217–1226Google Scholar
  16. 16.
    Tobiasz M, Isenberg P, Carpendale S (2009) Lark: coordinating co-located collaboration with information visualization. IEEE Trans Visual Comput Graph 15(6):1065–1072CrossRefGoogle Scholar
  17. 17.
    Kim K, Javed W, Williams C, Elmqvist N, Irani P (2010) Hugin: a framework for awareness and coordination in mixed-presence collaborative information visualization. In: Proceedings of ACM ITS’10, pp 231–240Google Scholar
  18. 18.
    McGrath W, Bowman B, McCallum D, Hincapié-Ramos JD, Elmqvist N, Irani P (2012) Branch-explore-merge: facilitating real-time revision control in collaborative visual exploration. In: Proceedings of ACM ITS’12, pp 235–244Google Scholar
  19. 19.
    Jetter H-C, Gerken J, Zöllner M, Reiterer H, Milic-Frayling N (2011) Materializing the query with facet-streams: a hybrid surface for collaborative search on tabletops. In: Proceedings of ACM CHI’11, pp 3013–3022Google Scholar
  20. 20.
    Vogt K, Bradel L, Andrews C, North C, Endert A, Hutchings D (2011) Co-located collaborative sensemaking on a large high-resolution display with multiple input devices. In: Proceedings of the IFIP TC 13 international conference on human–computer interaction (INTERACT’11), pp 589–604Google Scholar
  21. 21.
    Isenberg P, Carpendale S, Bezerianos A, Henry N, Fekete J-D (2009) CoCoNutTrix: collaborative retrofitting for information visualization. IEEE Comput Graph Appl 29(5):44–57CrossRefGoogle Scholar
  22. 22.
    Isenberg P, Fisher D, Morris MR, Inkpen K, Czerwinski M (2010) An exploratory study of co-located collaborative visual analytics around a tabletop display. In: Proceedings of IEEE VAST’10, pp 179–186Google Scholar
  23. 23.
    Geyer F, Jetter HC, Pfeil U, Reiterer H (2010) Collaborative sketching with distributed displays and multimodal interfaces. In: Proceedings of ACM ITS’10, pp 259–260Google Scholar
  24. 24.
    Jiang H, Wigdor D, Forlines C, Borkin M, Kauffmann J, Shen C (2008) LivOlay: interactive ad-hoc registration and overlapping of applications for collaborative visual exploration. In: Proceedings of ACM CHI’08, pp 1357–1360Google Scholar
  25. 25.
    Tan DS, Meyers B, Czerwinski M (2004) WinCuts: manipulating arbitrary window regions for more effective use of screen space. In: Proceedings of ACM CHI’04 Extended Abstracts, pp 1525–1528Google Scholar
  26. 26.
    Wigdor D, Jiang H, Forlines C, Borkin M, Shen C (2009) WeSpace: the design development and deployment of a walk-up and share multi-surface visual collaboration system. In: Proceedings of ACM CHI’09, pp 1237–1246Google Scholar
  27. 27.
    Schmidt D, Chehimi F, Rukzio E, Gellersen H (2010) PhoneTouch: a technique for direct phone interaction on surfaces. In: Proceedings of ACM UIST’10, pp 13–16Google Scholar
  28. 28.
    Seifert J, Simeone A, Schmidt D, Holleis P, Reinartz C, Wagner M, Gellersen H, Rukzio E (2012) MobiSurf: improving co-located collaboration through integrating mobile devices and interactive surfaces. In: Proceedings of ACM ITS’12, pp 51–60Google Scholar
  29. 29.
    Rekimoto J (1997) Pick-and-drop: a direct manipulation technique for multiple computer environments. In: Proceedings of ACM UIST’97, pp 31–39Google Scholar
  30. 30.
    Dachselt R, Buchholz R (2008) Throw and tilt-seamless interaction across devices using mobile phone gestures. In: GI Jahrestagung (1), pp 272–278Google Scholar
  31. 31.
    Marquardt N, Hinckley K, Greenberg S (2012) Cross-device interaction via micro-mobility and f-formations. In: Proceedings of ACM UIST’12, pp 13–22Google Scholar
  32. 32.
    Wigdor D, Shen C, Forlines C, Balakrishnan R (2006) Table-centric interactive spaces for real-time collaboration. In: Proceedings of AVI’06, pp 103–107Google Scholar
  33. 33.
    Spindler M, Tominski C, Schumann H, Dachselt R (2010) Tangible views for information visualization. In: Proceedings of ACM CHI’10, pp 157–166Google Scholar
  34. 34.
    Andrews C, Endert A, North C (2010) Space to think: large high-resolution displays for sensemaking. In: Proceedings of ACM CHI’10, pp 55–64Google Scholar
  35. 35.
    Pirolli P, Card S (2005) Sensemaking processes of intelligence analysts and possible leverage points as identified through cognitive task analysis. In: Proceedings of international conference on intelligence analysis, pp 6–11Google Scholar
  36. 36.
    Kuhn W (1996) Handling data spatially: spatializating user interfaces. In: Proceedings of the international symposium on spatial data handling (SDH’96), pp 877–893Google Scholar
  37. 37.
    Ball R, North C, Bowman DA (2007) Move to improve: promoting physical navigation to increase user performance with large displays. In: Proceedings of ACM CHI’07, pp 191–200Google Scholar
  38. 38.
    Robinson AC (2008) Collaborative synthesis of visual analytic results. In: Proceedings of IEEE VAST’08, pp 67–74Google Scholar
  39. 39.
    Yee SLCY, Quek F, Endert A, Chung H, Sawyer B (2012) The physicality of technological devices in education: building a digital experience for learning. In: Proceedings of IEEE ICALT’12, pp 579–581Google Scholar
  40. 40.
    Grinstein G, Plaisant C, Laskowski S, O’Connell T, Whiting M (2007) VAST 2007 contest-blue iguanodon. In: Proceedings of IEEE VAST’07, pp 231–232Google Scholar
  41. 41.
    Salton G, McGill M (1986) Introduction to modern information retrieval. McGraw-Hill, New York, NYGoogle Scholar
  42. 42.
    Baldwin B, Carpenter B (2011) Lingpipe. Accessed 6 June 2013
  43. 43.
    Cañas AJ, Hill G, Carff R, Suri N, Lott J, Gómez G, Eskridge TC, Arroyo M, Carvajal R (2004) CmapTools: a knowledge modeling and sharing environment. In: Proceedings of the first international conference on concept mapping, pp 125–133Google Scholar
  44. 44.
    Fette I, Melnikov A (2011) The WebSocket protocol. Accessed 6 Feb 2013
  45. 45.
    Crockford D (2006) The application/JSON media type for Javascript object notation (JSON). Accessed 6 June 2013
  46. 46.
    Tilkov S, Vinoski S (2010) Node. js: using JavaScript to build high-performance network programs. IEEE Internet Comput 14(6):80–83CrossRefGoogle Scholar
  47. 47.
    Kaltenbrunner M, Bovermann T, Bencina R, Costanza E (2005) TUIO: a protocol for table-top tangible user interfaces. In: Proceedings of the 6th Int’l workshop on gesture in human–computer interaction and simulationGoogle Scholar
  48. 48.
    Hughes F, Schum D (2003) Discovery-proof-choice, the art and science of the process of intelligence analysis—preparing for the future of intelligence analysis. Joint Military Intelligence College, Washington, DCGoogle Scholar
  49. 49.
    Plaisant C, Grinstein G, Scholtz J, Whiting M et al (2008) Evaluating visual analytics at the 2007 VAST symposium contest. IEEE Comput Graph Appl 28(2):12–21CrossRefGoogle Scholar
  50. 50.
    Shipman FM III, Marshall CC (1999) Formality considered harmful: experiences, emerging themes, and directions on the use of formal representations in interactive systems. Comput Support Cooper Work (CSCW) 8(4):333–352CrossRefGoogle Scholar
  51. 51.
    Clark HH, Brennan SE (1991) Grounding in communication. Perspect Soc Shar Cogn 13:127–149CrossRefGoogle Scholar
  52. 52.
    Hollan J, Hutchins E, Kirsh D (2000) Distributed cognition: toward a new foundation for human–computer interaction research. ACM Trans Comput Hum Interact (TOCHI) 7(2):174–196CrossRefGoogle Scholar
  53. 53.
    Geyer F, Budzinski J, Reiterer H (2012) IdeaVis: a hybrid workspace and interactive visualization for paper-based collaborative sketching sessions. In: Proceedings of the 7th Nordic conference on human–computer interaction, pp 331–340Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Haeyong Chung
    • 1
  • Chris North
    • 1
  • Jessica Zeitz Self
    • 1
  • Sharon Chu
    • 1
  • Francis Quek
    • 1
  1. 1.Department of Computer ScienceVirginia TechBlacksburgUSA

Personalised recommendations