Personal and Ubiquitous Computing

, Volume 18, Issue 2, pp 427–443 | Cite as

Cross-community context management in Cooperating Smart Spaces

  • Nikos Kalatzis
  • Nicolas Liampotis
  • Ioanna RoussakiEmail author
  • Pavlos Kosmides
  • Ioannis Papaioannou
  • Stavros Xynogalas
  • Daqing Zhang
  • Miltiades Anagnostou
Original Article


Recently, social networks have become the most prevalent IT paradigm, as the vast majority of Internet users maintain one or multiple social networking accounts. These accounts, irrespectively of the underlying service, contain rich information and data for the owner’s preferences, social skills, everyday activities, beliefs and interests. Along with these services, the computation, sensing and networking capabilities of the state of the art mobile and portable devices, with their always-on mode, assist users in their everyday lives. Thus, the integration of social networking services with current pervasive computing systems could provide the users with the potential to interact with other users that have similar interests, preferences and expectations; and in general, the same or similar context, for limited or not time periods, in order to ameliorate their overall experience, communicate, socialise and improve their everyday activities with minimal effort. This paper introduces a cross-community context management framework that is suitable for Cooperating Smart Spaces, which couple the advantages of pervasive computing and social networking. This framework goes beyond the state of the art, among others, in that cross-community context from a multitude of sources is collected and processed to enhance the end user experience and increase the perceived value of the services provided.


Context awareness Community context Cross-community context management Cooperating Smart Space Social networking Pervasive computing 



The research leading to these results has received funding from the European Community’s 7th Framework Programme [FP7/2007-2013] under grant agreement no 257493 of the SOCIETIES (Self Orchestrating CommunIty ambiEnT IntelligEnce Spaces) Integrated Project. However, this paper expresses the authors’ views, which are not necessarily those of the project consortium.


  1. 1.
    Kietzmann J, Silvestre B, McCarthy I, Pitt L (2012) Unpacking the social media phenomenon: towards a research agenda. J Public Aff 12(2):109–119. doi: 10.1002/pa.1412 CrossRefGoogle Scholar
  2. 2.
    Lin KY, Lu HP (2011) Why people use social networking sites: an empirical study integrating network externalities and motivation theory. Comput Hum Behav 27(3):1152–1161. doi: 10.1016/j.chb.2010.12.009 CrossRefGoogle Scholar
  3. 3.
    Obaidat M, Denko M, Woungang I (2011) Pervasive computing networks, 1st edn. Wiley, West SussexCrossRefGoogle Scholar
  4. 4.
    Hansmann U, Merk L, Nicklous M, Stober T (2012) Pervasive computing: the mobile world, 2nd edn. Springer, BerlinGoogle Scholar
  5. 5.
    Doolin K, Roussaki I, Roddy M, Kalatzis N, Papadopoulou E, Taylor NK, Liampotis N, McKitterick D, Jennings E, Kosmides P (2012) SOCIETIES: where pervasive meets social. In: Future internet assembly book 2012, pp 30–41Google Scholar
  6. 6.
    Roussaki I, Kalatzis N, Liampotis N, Kosmides P, Anagnostou M, Doolin K, Jennings E, Bouloudis Y, Xynogalas S (2012) Context-awareness in wireless and mobile computing revisited to embrace social networking. Commun Mag IEEE 50(6):74–81. doi: 10.1109/mcom.2012.6211489 CrossRefGoogle Scholar
  7. 7.
    Kang S, Kim W, Lee D, Lee Y (2005) Group context-aware service discovery for supporting continuous service availability. In: Proceedings of ubiPCMM 2005, Tokyo, Japan, pp 62–63Google Scholar
  8. 8.
    Marin-Perianu RS, Marin-Perianu M, Havinga PJ, Scholten J (2007) Movement-based group awareness with wireless sensor networks. In: Proceedings of pervasive 2007, Toronto, Canada, pp 298–315Google Scholar
  9. 9.
    Hussein T, Linder T, Gaulke W, Ziegler J (2010) A framework and an architecture for context-aware group recommendations. In: Proceedings of CRIWG 2010, Maastricht, Netherlands, pp 121–128Google Scholar
  10. 10.
    Bottazzi D, Corradi A, Montanari R (2005) A context-aware group management middleware to support resource sharing in MANET environments. In: Proceedings of MDM 2005, Ayia Napa, Cyprus, pp 147–151Google Scholar
  11. 11.
    Chong C, Nishio N (2007) GRECOM: group context management middleware for group event based services. In: Proceedings of UbiComp 2007, Innsbruck, Austria, pp 176–179Google Scholar
  12. 12.
    Biamino G (2011) Modeling social contexts for pervasive computing environments. In: Proceedings of PerCom 2011, IEEE, Lugano, Switzerland, pp 415–420Google Scholar
  13. 13.
    Beach A, Gartrell M, Akkala S, Elston J, Kelley J, Nishimoto K, Ray B, Razgulin S, Sundaresan K, Surendar B, Terada M, Han R (2008) WhozThat? Evolving an ecosystem for context-aware mobile social networks. Netw IEEE 22(4):50–55. doi: 10.1109/MNET.2008.4579771 CrossRefGoogle Scholar
  14. 14.
    Messeguer R, Navarro L, Reyes A (2007) Group-awareness for mobile cooperative learning. In: Proceedings of WMUTE 2007, IEEE, Athens, Greece, pp 74–81Google Scholar
  15. 15.
    Ferscha A, Holzmann C, Oppl S (2004) Context awareness for group interaction support. In: Proceedings of MobiWac 2004, Philadelphia, PA, USA, pp 88–97Google Scholar
  16. 16.
    Guo B, Zhang D, Wang Z, Yu Z, Zhou X (2013) Opportunistic IoT: exploring the harmonious interaction between human and the internet of things. J Netw Comput Appl. doi: 10.1016/j.jnca.2012.12.028 Google Scholar
  17. 17.
    Jung JJ (2008) Ontology-based context synchronization for ad hoc social collaborations. Elsevier Knowledge Based System Journal 21(7):573–580. doi: 10.1016/j.knosys.2008.03.015 CrossRefGoogle Scholar
  18. 18.
    Song J, Kim S (2008) Community based context-aware information for the intelligent personalized information service. Int J Multimed Ubiquitous Eng 3(3):23–30Google Scholar
  19. 19.
    Beach A, Gartrell M, Xing X, Han R, Lv Q, Mishra S, Seada K (2010) Fusing mobile, sensor, and social data to fully enable context-aware computing. In: Proceedings of HotMobile 2010, Annapolis, MD, USA, pp 60–65Google Scholar
  20. 20.
    Guo B, Zhang D, Yu Z, Zhou X, Zhou Z (2012) Enhancing spontaneous interaction in opportunistic mobile social networks. Commun Mob Comput 1. doi: 10.1186/2192-1121-1-6
  21. 21.
    Coutand O, Droegehorn O, David K, Nurmi P, Floréen P, Kernchen R, Holtmanns S, Campadello S, Kanter T, Martin M, van Eijk R, Guarneri R (2005) Context-aware group management in mobile environments. In: Proceedings of IST summit 2005, Dresden, GermanyGoogle Scholar
  22. 22.
    Roussaki I, Liampotis N, Kalatzis N, Frank K, Hayden P (2009) How to make personal smart spaces context-aware. In: Proceedings of AISB 2009, Edinburgh, Scotland, pp 26–32Google Scholar
  23. 23.
    Eagle N, Pentland A, Lazer D (2008) Mobile phone data for inferring social network structure. In: Social computing, behavioral modeling, and prediction. Springer, US, pp 79–88Google Scholar
  24. 24.
    Powers DMW (2011) Evaluation: from precision, recall and f-measure to roc, informedness, markedness & correlation. J Mach Learn Technol 2(1):37–63MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Nikos Kalatzis
    • 1
  • Nicolas Liampotis
    • 1
  • Ioanna Roussaki
    • 1
    Email author
  • Pavlos Kosmides
    • 1
  • Ioannis Papaioannou
    • 1
  • Stavros Xynogalas
    • 2
  • Daqing Zhang
    • 3
  • Miltiades Anagnostou
    • 1
  1. 1.National Technical University of Athens (NTUA)AthensGreece
  2. 2.Ambient Intelligence Informatics and Telecommunications (AMITEC) LTDAthensGreece
  3. 3.Institute TELECOM SudParisEvryFrance

Personalised recommendations