Personal and Ubiquitous Computing

, Volume 17, Issue 6, pp 1117–1126 | Cite as

Adaptive manuals as assistive technology to support and train people with acquired brain injury in their daily life activities

  • Javier Gómez
  • Germán Montoro
  • Pablo A. Haya
  • Xavier Alamán
  • Susana Alves
  • Mónica Martínez
Original Article

Abstract

Assistive technologies and ubiquitous computing can be related since both try to help people in their lives. This common objective motivated us to develop and evaluate a system that puts ubiquitous computing technologies into the rehabilitation process of people with acquired brain injury. Thus, in this paper, we present and evaluate a system that shows adaptive manuals for daily-life activities for people with acquired brain injury. This first evaluation allowed us to validate our approach and also to extract valuable information about these systems as well as environmental factors that may affect the patients.

Keywords

Acquired brain injury Mobile devices Assistive technology QR codes 

References

  1. 1.
    Barkhuus L, Polichar V (2011) Empowerment through seamfulness: smart phones in everyday life. Pers Ubiquit Comput 15(6):629–639CrossRefGoogle Scholar
  2. 2.
    Bauchet J, Pigot H, Giroux S, Lussier-Desrochers D, Lachapelle Y, Mokhtari M (2009) Designing judicious interactions for cognitive assistance: the acts of assistance approach. In: Proceedings of the 11th international ACM SIGACCESS conference on computers and accessibility, pp 11–18Google Scholar
  3. 3.
    Boger J, Mihailidis A (2011) The future of intelligent assistive technologies for cognition: devices under development to support independent living and aging-with-choice. NeuroRehabilitation 28(3):271–280Google Scholar
  4. 4.
    Carmien S (2003) Maps: dynamic scaffolding for independence for persons with cognitive impairments. User modeling, pp 147–150Google Scholar
  5. 5.
    Cole E (1999) Cognitive prosthetics: an overview to a method of treatment. NeuroRehabilitation 12(1):39–51Google Scholar
  6. 6.
    Cole E (2011) Patient-centered design: interface personalization for individuals with brain injury. Universal access in human-computer interaction. Users diversity, pp 291–300Google Scholar
  7. 7.
    Cole E, Dehdashti P (2006) Patient-centered design as a research strategy for cognitive prosthetics: lessons learned from working with patients and clinicians for 2 decades. In: CHI 2006 workshop on designing technology for people with cognitive impairments. CiteseerGoogle Scholar
  8. 8.
    Davies D, Stock S, Wehmeyer M (2002) Enhancing independent task performance for individuals with mental retardation through use of a handheld self-directed visual and audio prompting system. Educ Train Mental Retard Dev Disabil 37(2):209–218Google Scholar
  9. 9.
    Gaggioli A, Pioggia G, Tartarisco G, Baldus G, Corda D, Cipresso P, Riva G (2011) A mobile data collection platform for mental health research. Pers Ubiquit Comput 13:1–11Google Scholar
  10. 10.
    García-Herranz M, Montoro G, Haya P (2009) Living intelligently assisted: augmented objects for subtle interaction. In: Designing ambient interactions for older users. Adjunct proceedings of the 3rd European conference on ambient intelligence (AmI’09)Google Scholar
  11. 11.
    García-Peña M, Sánchez-Cabeza A (2004) Alteraciones perceptivas y práxicas en pacientes con traumatismo craneoencefálico: relevancia en las actividades de la vida diaria. Rev Neurol 38(8):775–784Google Scholar
  12. 12.
    García-Vázquez J, Rodríguez M, Tentori M, Saldaña D, Andrade Á, Espinoza A (2010) An agent-based architecture for developing activity-aware systems for assisting elderly. J UCS 16(12):1500–1520Google Scholar
  13. 13.
    García-Vázquez JP, Rodríguez MD, Andrade AG, Bravo J (2011) Supporting the strategies to improve elders’ medication compliance by providing ambient aids. Pers Ubiquit Comput 15:389–397CrossRefGoogle Scholar
  14. 14.
    Hynes M, Wang H, McCarrick E, Kilmartin L (2011) Accurate monitoring of human physical activity levels for medical diagnosis and monitoring using off-the-shelf cellular handsets. Pers Ubiquit Comput 15(7):667–678CrossRefGoogle Scholar
  15. 15.
    Iso9999 (2007) Assistive products for persons with disability—classification and terminologyGoogle Scholar
  16. 16.
    Jara AJ, Zamora MA, Skarmeta AF (2011) An internet of things—based personal device for diabetes therapy management in ambient assisted living (aal). Pers Ubiquit Comput 15:431–440CrossRefGoogle Scholar
  17. 17.
    Kirsch N, Levine S, Fallon-Krueger M, Jaros L (1987) Focus on clinical research: the microcomputer as an “orthotic” device for patients with cognitive deficits. J Head Trauma RehabilGoogle Scholar
  18. 18.
    Larsson Lund M, Lövgren-engström A, Lexell J (2011) Using everyday technology to compensate for difficulties in task performance in daily life: experiences in persons with acquired brain injury and their significant others. Disabil Rehabil Assist Technol 6(5):402–411CrossRefGoogle Scholar
  19. 19.
    Levinson R (1997) Peat–the planning and execution assistant and trainer. J Head Trauma Rehabil 769Google Scholar
  20. 20.
    Llinás P, Montoro G, García-Herranz M, Haya P, Alamán X (2009) Adaptive interfaces for people with special needs. In: Omatu S, Rocha M, Bravo J, Fernández Riverola F, Corchado E, Bustillo A, Corchado JM (eds) IWANN(2), vol 5518 of Lecture Notes in Computer Science, Springer, Berlin/HeidelbergGoogle Scholar
  21. 21.
    López-de Ipiña D, Díaz-de Sarralde I, García-Zubia J (2010) An ambient assisted living platform integrating rfid data-on-tag care annotations and twitter. J Univ Comput Sci 16(12):1521–1538Google Scholar
  22. 22.
    Martin J, Martin L, Stumbo N, Morrill J (2011) The impact of consumer involvement on satisfaction with and use of assistive technology. Disabil Rehabil Assist Technol 6(3):225–242CrossRefGoogle Scholar
  23. 23.
    Middleton JA (2005) Acquired brain injury. Psychiatry 4(7):61–64CrossRefGoogle Scholar
  24. 24.
    Mihailidis A, Fernie G, Cleghorn W (2000) The development of a computerized cueing device to help people with dementia to be more independent. Technol Disabil 13(1):23–40Google Scholar
  25. 25.
    Mihailidis A, Blunsden S, Boger J, Richards B, Zutis K, Young L, Hoey J (2010) Towards the development of a technology for art therapy and dementia: definition of needs and design constraints. Arts Psychother 37(4):293–300CrossRefGoogle Scholar
  26. 26.
    Olivera F, García-Herranz M, Haya P (2010) Subtle interaction for ambient assisted living. In: II international workshop on ambient assisted living, IWAAL 2010 (CEDI 2010), pp 89–98Google Scholar
  27. 27.
    O’Neill B, Gillespie A (2008) Simulating naturalistic instruction: the case for a voice mediated interface for assistive technology for cognition. J Assist Technol 2(2):22–31CrossRefGoogle Scholar
  28. 28.
    Thomson E, Mathews S, Todd D, McCullagh P, Ware M, Mulvenna M, Martin S (2010) Brain: developing brain computer interfaces with rapid automated interfaces for non experts. In: International society for Gerontechnology 7th world conferenceGoogle Scholar
  29. 29.
    Tsui KM, Yanco HA (2010) Prompting devices: a survey of memory aids for task sequencing. In: QoLT international symposium: intelligent systems for better living, held in conjunction with RESNA 2010Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Javier Gómez
    • 1
  • Germán Montoro
    • 1
  • Pablo A. Haya
    • 2
  • Xavier Alamán
    • 1
  • Susana Alves
    • 3
  • Mónica Martínez
    • 3
  1. 1.Dpto. de Ingeniería InformáticaUniversidad Autónoma de MadridMadridSpain
  2. 2.Instituto de Ingeniería del ConocimientoUniversidad Autónoma de MadridMadridSpain
  3. 3.Centro de Referencia Estatal de Atención al Daño CerebralMadridSpain

Personalised recommendations