Personal and Ubiquitous Computing

, Volume 16, Issue 5, pp 469–484 | Cite as

Social itinerary recommendation from user-generated digital trails

Original Article

Abstract

Planning travel to unfamiliar regions is a difficult task for novice travelers. The burden can be eased if the resident of the area offers to help. In this paper, we propose a social itinerary recommendation by learning from multiple user-generated digital trails, such as GPS trajectories of residents and travel experts. In order to recommend satisfying itinerary to users, we present an itinerary model in terms of attributes extracted from user-generated GPS trajectories. On top of this itinerary model, we present a social itinerary recommendation framework to find and rank itinerary candidates. We evaluated the efficiency of our recommendation method against baseline algorithms with a large set of user-generated GPS trajectories collected from Beijing, China. First, systematically generated user queries are used to compare the recommendation performance in the algorithmic level. Second, a user study involving current residents of Beijing is conducted to compare user perception and satisfaction on the recommended itinerary. Third, we compare mobile-only approach with Mobile+Cloud architecture for practical mobile recommender deployment. Lastly, we discuss personalization and adaptation factors in social itinerary recommendation throughout the paper.

Keywords

Spatio-temporal data mining GPS trajectories Itinerary recommendation Social recommendation 

References

  1. 1.
    Ardissono L, Goy A, Petrone G, Segnan M (2005) A multi-agent infrastructure for developing personalized web-based systems. ACM Trans Internet Tech 5:47–69. doi:10.1145/1052934.1052936 CrossRefGoogle Scholar
  2. 2.
    Ashbrook D, Starner T (2003) Using GPS to learn significant locations and predict movement across multiple users. Pers Ubiquit Comput 7:275–286. doi:10.1007/s00779-003-0240-0 CrossRefGoogle Scholar
  3. 3.
    Cao L, Krumm J (2009) From GPS traces to a routable road map. In: Proceedings of GIS 2009, pp 3–12. doi:10.1145/1653771.1653776
  4. 4.
    Chodhury MD, Feldman M, Amer-Yahia S, Golbandi N, Lempel R, Yu C (2010) Automatic construction of travel itineraries using social breadcrumbs. In: Proceedings of HT 2010, pp 35–44. doi:10.1145/1810617.1810626
  5. 5.
    Dunstall S, Horn MET, Kilby P, Krishnamoorthy M, Owens B, Sier D, Thiebaux S (2003) An automated itinerary planning system for holiday travel. Inf Technol Tour 6:195–210CrossRefGoogle Scholar
  6. 6.
    GeoLife GPS Trajectories (2010) http://bit.ly/bd78Rt, http://bit.ly/gY2JHq
  7. 7.
    Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Proceedings of KDD 2007, pp 330–339. doi:10.1145/1281192.1281230
  8. 8.
    Girardin F, Calabrese F, Flore F, Ratti C, Blat J (2008) Digital footprinting: uncovering tourists with user-generated content. IEEE Pervas Comput 7:36–43. doi:10.1109/MPRV.2008.71 CrossRefGoogle Scholar
  9. 9.
    Haversine Formula (2010) http://en.wikipedia.org/wiki/Haversine_formula. Accessed 24 Nov 2010
  10. 10.
    Hollenstein L, Purves R (2010) Exploring place through user-generated content: using Flickr to describe city cores. J Spat Inf Sci 1:21–48. doi:10.5311/JOSIS.2010.1.3 Google Scholar
  11. 11.
    Huang Y, Bian L (2009) A Bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the Internet. Expert Syst Appl 36:933–943. doi:10.1016/j.eswa.2007.10.019 CrossRefGoogle Scholar
  12. 12.
    Kim J, Kim H, Ryu JH (2009) TripTip: a trip planning service with tag-based recommendation. In: Proceedings of CHI EA, pp 3467–3472. doi:10.1145/1520340.1520504
  13. 13.
    Krumm J (2010) Where will they turn: predicting turn proportions at intersections. Pers Ubiquit Comput 14:591–599. doi:10.1007/s00779-009-0248-1 CrossRefGoogle Scholar
  14. 14.
    Kumar P, Singh V, Reddy D (2005) Advanced traveler information system for Hyderabad city. IEEE Trans Intell Transp 6:26–37. doi:10.1109/TITS.2004.838179 CrossRefGoogle Scholar
  15. 15.
    Li Q, Zheng Y, Xie X, Chen Y, Liu W, Ma WY (2008) Mining user similarity based on location history. In: Proceedings of GIS 2008, pp 1–10. doi:10.1145/1463434.1463477
  16. 16.
    Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) WhereNext: a location predictor on trajectory pattern mining. In: Proceedings of KDD 2009, pp. 637–646. doi:10.1145/1557019.1557091
  17. 17.
    Stabb S, Werther H, Ricci F, Zipf A, Gretzel U, Fesenmaier D, Paris C, Knoblock C (2002) Intelligent systems for tourism. IEEE Intell Syst 17:53–66. doi:10.1109/MIS.2002.1134362 CrossRefGoogle Scholar
  18. 18.
    Spherical Law of Cosines (2010) http://en.wikipedia.org/wiki/Spherical_law_of_cosine. Accessed 24 Nov 2010
  19. 19.
    Suh Y, Shin C, Woo W (2009) A mobile phone guide: Spatial, personal, and social experience for cultural heritage. IEEE Trans Consum Electr 55:2356–2364. doi:10.1109/TCE.2009.5373810 CrossRefGoogle Scholar
  20. 20.
    Suh Y, Shin C, Dow S, MacIntyre B, Woo W (2010) Enhancing and evaluating users’ social experience with a mobile phone guide applied to cultural heritage. Pers Ubiquit Comput 1–17 (online first). doi:10.1007/s00779-010-0344-2
  21. 21.
    Tai CH, Yang DN, Lin LT, Chen MS (2008) Recommending personalized scenic itinerary with geo-tagged photos. In: Proceedings of ICME 2008, pp 1209–1212. doi:10.1109/ICME.2008.4607658
  22. 22.
    Takeuchi Y, Sugimoto M (2009) A user-adaptive city guide system with an unobtrusive navigation interface. Pers Ubiquit Comput 13:119–132. doi:10.1007/s00779-007-0192-x CrossRefGoogle Scholar
  23. 23.
    Werthner H (2003) Intelligent systems in travel and tourism. In: Proceedings of IJCAI 2003, pp 1620–1628Google Scholar
  24. 24.
    Yoon H, Woo W (2009) CAMAR mashup: empowering end-user participation in U-VR environment. In: Proceedings of ISUVR 2009, pp 33–36. doi:10.1109/ISUVR.2009.22
  25. 25.
    Yoon H, Zheng Y, Xie X, Woo W (2010) Smart itinerary recommendation based on user-generated GPS trajectories. In: Proceedings of UIC 2010, pp 19–34. doi:10.1007/978-3-642-16355-5_5
  26. 26.
    Zhang D, Guo B, Li B, Yu Z (2010) Extracting social and community intelligence from digital footprints: an emerging research area. In: Proceedings of UIC 2010, pp 4–18. doi:10.1007/978-3-642-16355-5_4
  27. 27.
    Zheng VW, Zheng Y, Xie X, Yang Q (2010) Collaborative location and activity recommendations with GPS history data. In: Proceedings of WWW 2010, pp 1029–1038. doi:10.1145/1772690.1772795
  28. 28.
    Zheng VW, Cao B, Zheng Y, Xie X, Yang Q (2010) Collaborative filtering meets mobile recommendation. In: Proceedings of AAAI 2010, pp 238–241Google Scholar
  29. 29.
    Zheng Y, Wang L, Zhang R, Xie X, Ma WY (2008) GeoLife: managing and understanding your past life over maps. In: Proceedings of MDM 2008, pp 211–212. doi:10.1109/MDM.2008.20
  30. 30.
    Zheng Y, Li Q, Chen Y, Xie X, Ma WY (2008) Understanding mobility based on GPS data. In: Proceedings of Ubicomp 2008, pp 312–321. doi:10.1145/1409635.1409677
  31. 31.
    Zheng Y, Liu L, Wang L, Xie X (2008) Learning transportation mode from raw GPS data for geographic applications on the web. In: Proceedings of WWW 2008, pp 247–256. doi:10.1145/1367497.1367532
  32. 32.
    Zheng Y, Chen Y, Xie X, Ma WY (2009) GeoLife2.0: a location-based social networking service. In: Proceedings of MDM 2009, pp 357–358. doi:10.1109/MDM.2009.50
  33. 33.
    Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of WWW 2009, pp 791–800. doi:10.1145/1526709.1526816
  34. 34.
    Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining correlation between locations using human location history. In: Proceedings of GIS 2009, pp 472–475. doi:10.1145/1653771.1653847
  35. 35.
    Zheng Y, Chen Y, Li Q, Xie X, Ma WY (2010) Understanding transportation modes based on GPS data for web applications. ACM Trans Web 4:1–36. doi:10.1145/1658373.1658374 CrossRefGoogle Scholar
  36. 36.
    Zheng Y, Xie X, Ma WY (2010) GeoLife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng Bull 33:32–39Google Scholar
  37. 37.
    Zheng Y, Xie X (2011) Learning travel recommendations from user-generated GPS traces. ACM Trans Intell Syst Technol 2:1–29. doi:10.1145/1889681.1889683 Google Scholar
  38. 38.
    Zheng Y, Zhang L, Ma Z, Xie X, Ma WY (2011) Recommending friends and locations based on individual location history. ACM Trans Web 5:1–44. doi:10.1145/1921591.1921596 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Hyoseok Yoon
    • 1
  • Yu Zheng
    • 2
  • Xing Xie
    • 2
  • Woontack Woo
    • 1
  1. 1.Gwangju Institute of Science and TechnologyGwangjuSouth Korea
  2. 2.Microsoft Research AsiaBeijingChina

Personalised recommendations