Advertisement

Personal and Ubiquitous Computing

, Volume 15, Issue 8, pp 811–820 | Cite as

Robust video communication for ubiquitous network access

  • Hannadi Samek
  • Martin FleuryEmail author
  • Mohammed Ghanbari
Original Article

Abstract

Ubiquitous network access implies that video can be streamed to portable devices whether they are moving outdoors or docked at home. Unfortunately, broadband wireless channels and their wired alternatives present a hostile environment for video communication, which manifests itself in error bursts. This paper presents a robust application layer, channel-coding scheme suitable for data-partitioned, compressed video. Data partitioning prioritizes the more important data within a compressed bitstream. In the scheme, the more important compressed data are protected prior to communication over an access network. In particular, window-growth rateless codes are used. This form of rateless code can be incrementally scaled to reflect the importance of the data being protected. The paper gives details of the scheme for achieving this in the context of an H.264/AVC codec’s picture types and structures. The paper considers how best to apply the scheme to H.264/AVC’s data-partitioning modes in a practical manner. Simulations of error-prone channels show that the proposed unequal protection scheme achieves several dBs of improvement in video quality, when compared with equal protection. The simulations modeled both wireless and wired access networks.

Keywords

Data-partitioned video FEC Rateless channel coding Window-growth codes Video streaming 

Notes

Acknowledgments

The authors gratefully thank Rouzbeh Razavi and Muhammad Altaf for conducting simulations in support of the findings in this paper.

References

  1. 1.
    Afzal J, Stockhammer T, Gasiba T, Xu W (2006) Video streaming over MBMS: a system design approach. J Multimedia 1(5):25–35Google Scholar
  2. 2.
    Ahmad S, Hamzaoui R, Al-Akaidi M (2007) Robust live unicast video streaming with rateless codes. In: Proceedings of the 16th international packet video workshop, Lausanne, Switzerland, pp 78–84Google Scholar
  3. 3.
    Albanese A, Blömer J, Edmonds J, Luby M, Sudan M (1996) Priority encoding transmission. IEEE Trans Inf Theory 42(6):1737–1744zbMATHCrossRefGoogle Scholar
  4. 4.
    ANSI T1.413-1998 (1998) Network and customer installation interfaces—Asymmetric digital subscriber line (ADSL) Metallic interface. American National Standards InstituteGoogle Scholar
  5. 5.
    Bouabdullah A, Lacan J (2006) Dependency aware unequal erasure protection codes. J Ziezhang Univ 7:27–33CrossRefGoogle Scholar
  6. 6.
    Dhondt, Y, Mys, S, Vermeirsch, K, Van de Walle, R (2007) Constrained inter prediction: removing dependencies between different data partitions. In: Proceedings of advanced concepts for intelligent visual systems, pp 720–731Google Scholar
  7. 7.
    Fathi H, Chakroborty SS, Prasad R (2008) Models for performance analysis in wireless networks. Voice over IP in wireless heterogeneous networks signalling, mobility, and security. Springer, Berlin, pp 49–57Google Scholar
  8. 8.
    Ghanbari M (1997) Two-layer coding of video signals for VBR networks. IEEE J Sel Areas Commun 7(5):771–781CrossRefGoogle Scholar
  9. 9.
    Ghanbari M (2003) Standard video codecs: image compression to advanced video coding. IET Publications, LondonCrossRefGoogle Scholar
  10. 10.
    Klaue J, Rathke B, Wolisz A (2003) EvalVid—A framework for video transmission and quality evaluation. In: Proceedings of international conference on modeling techniques and tools for computer performance, pp 255–272Google Scholar
  11. 11.
    Kumar A (2007) Mobile TV: DVB-H, DMB, 3G systems and Rich media applications. Focal Press, AmsterdamGoogle Scholar
  12. 12.
    Lettieri P, Fragouli C, Srivastava MB (1997) Low power error control for wireless links. In: Proceedings of the 3rd annual ACM/IEEE international conference on mobile computing and networking, pp 139–150Google Scholar
  13. 13.
    Liang YJ, Apostolopoulos JG, Girod B (2008) Analysis of packet loss for compressed video: effect of burst losses and correlation between error frames. IEEE Trans Circuits Syst Video Technol 18(7):861–874CrossRefGoogle Scholar
  14. 14.
    Luby M (2002) LT codes. In: Proceedings of the 34rd annual IEEE symposium on foundations of computer science, Vancouver, Canada, pp 271–280Google Scholar
  15. 15.
    Luby M, Stockhammer T, Watson M (2008) Application layer FEC in IPTV systems. IEEE Commun Mag 46(5):94–101CrossRefGoogle Scholar
  16. 16.
    MacKay DJC (2005) Fountain codes. IEE Proc Commun 152(6):1062–1068CrossRefGoogle Scholar
  17. 17.
    Palanki R, Yedidai J (2004) Rateless codes on noisy channels. In: Proceedings of interantional symposium information theoryGoogle Scholar
  18. 18.
    Park S, Jeong S-H (2009) Mobile IPTV: approaches, challenges, standards and QoS support. IEEE Internet Comput 13(3):23–31CrossRefGoogle Scholar
  19. 19.
    Peng C, Tan Y, Xiong N, Yang D, Zhang H, Chao H-C et al (2009) Adaptive video-on-demand broadcasting in ubiquitous computing environment. Springer J Pers Ubiquitous Comput 13(7):479–488CrossRefGoogle Scholar
  20. 20.
    Rahnavard N, Vellambi BN, Fekri F (2007) Efficient broadcasting via rateless coding in multihop wireless networks with local information. In: Proceedings of the international wireless communications and mobile computing conference, Honolulu, Hawaii, pp 85–95Google Scholar
  21. 21.
    Rahnavard N, Vellambi BN, Fekri F (2007) Rateless codes with unequal error protection property. IEEE Trans Inf Theory 53(4):1521–1532MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Reponen E, Huuskonen P, Mihalic K (2008) Primary and secondary context in mobile video communication. Springer J Pers Ubiquitous Comput 12(4):281–288CrossRefGoogle Scholar
  23. 23.
    Robinson S, Eslambolchilar P, Jones M (2010) Exploring casual point-and-tilt interactions for mobile geo-blogging. Springer J Pers Ubiquitous Comput 14(4):363–379CrossRefGoogle Scholar
  24. 24.
    Shokorallahi A (2006) Raptor codes. IEEE Trans Inf Theory 52(6):2551–2567CrossRefGoogle Scholar
  25. 25.
    Stockhammer T, Bystrom M (2004) H.264/AVC data partitioning for mobile video communication. In: Proceedings of the international conference on image processing, Singapore, pp 545–548Google Scholar
  26. 26.
    Stockhammer T, Zia W (2007) Error-resilient coding and decoding strategies for video communication. In: Chou PA, van der Schaar M (eds) Multimedia in IP and wireless networks. Academic Press, Burlington, pp 13–58CrossRefGoogle Scholar
  27. 27.
    Sullivan GJ, Wiegand T (2004) Video compression—from concepts to the H.264/AVC standard. Proc IEEE 93(1):18–31CrossRefGoogle Scholar
  28. 28.
    Talari A, Rahnavard N (2009) Unequal error protection rateless coding for efficient MPEG video transmission. In: Proceedings of military communications conference, p 7Google Scholar
  29. 29.
    Vukobratovic D, Stankovic V, Sejdinovic D, Stankovic L, Ziong Z (2008) Expanding window Fountain codes for scalable video multicast. In: Proceedings of IEEE international conference on multimedia and expo, Hannover, Germany, pp 77–80Google Scholar
  30. 30.
    Wenger S (2003) H.264/AVC over IP. IEEE Trans Circuits Syst Video Technol 13:645–656CrossRefGoogle Scholar
  31. 31.
    Zorzi M, Rao RR (1997) Error control and energy consumption in communications for nomadic computing. IEEE Trans Comput 46(2):279–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Hannadi Samek
    • 1
  • Martin Fleury
    • 2
    Email author
  • Mohammed Ghanbari
    • 2
  1. 1.University of AleppoAleppoSyria
  2. 2.University of EssexColchesterUK

Personalised recommendations