Skip to main content
Log in

Brain–computer interfaces for space applications

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots. Such a kind of brain–computer interface is a natural way to augment human capabilities by providing a new interaction link with the outside world and is particularly relevant as an aid for paralysed humans, although it also opens up new possibilities in human–robot interaction for able-bodied people. One of these new fields of application is the use of brain–computer interfaces in the space environment, where astronauts are subject to extreme conditions and could greatly benefit from direct mental teleoperation of external semi-automatic manipulators—for instance, mental commands could be sent without any output/latency delays, as it is the case for manual control in microgravity conditions. Previous studies show that there is a considerable potential for this technology onboard spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Domotics: Use and control of robotic and semi-automatic devices in domestic applications.

Abbreviations

AI:

Artificial intelligence

ANN:

Artificial neural networks

BCI:

Brain–computer interface

CNS:

Central nervous system

EEG:

Electroencephalogram

EVA:

Extra-vehicular activity

fMRI:

functional magnetic resonance imaging

GCR:

Galactic cosmic rays

HDT:

Head-down tilt

IDIAP:

Institute dalle-molle d’Intelligence artificielle perceptuelle

IVA:

Intra-vehicular activity

LEO:

Low-earth orbit

MEG:

Magneto-encephalography

MMU:

Manned manoeuvring unit

PET:

Positron emission tomography

SAFER:

Simplified aid for EVA rescue

SCR:

Solar cosmic radiation

SPE:

Solar particles events

SPR:

Solar particle radiation

UV:

Ultra-violet

References

  1. Vidal J (1977) Real-time detection of brain events in EEG. IEEE Proc Special issue on Biological Signal Processing and Analysis 65:633–664

    Google Scholar 

  2. Menon C, de Negueruela C, Millán J del R, Tonet O, Carpi F, Broschart M, Ferrez PW, Buttfield A, Dario P, Citi L, Laschi C, Tombini M, Sepulveda F, Poli R, Palaniappan R, Tecchio F, Rossini PM, de Rossi D (2009) Prospects on brain-machine interfaces for space system control. Acta Astronaut 64:448–456. doi:10.1016/j.actaastro.2008.09.008

  3. Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2:664–670

    Article  Google Scholar 

  4. Mussallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (2004) Cognitive control signals for neural prosthetics. Science 305(5681):258–262

    Article  Google Scholar 

  5. Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MAL (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PloS Biol 1:193–208

    Article  Google Scholar 

  6. Taylor DM, Helms Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296(5574):1829–1832

    Article  Google Scholar 

  7. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue J (2002) Instant neural control of a movement signal. Nature 416(6877):141–142

    Article  Google Scholar 

  8. Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1:63–71

    Article  Google Scholar 

  9. Allison BZ, Pineda JA (2003) ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans Neural Sys Rehab Eng 11:110–113

    Article  Google Scholar 

  10. Bayliss JD (2003) Use of the evoked potential P3 component for control in a virtual environment. IEEE Trans Neural Sys Rehab Eng 11:113–116

    Article  Google Scholar 

  11. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event related brain potentials. Electroenceph Clin Neurophysiol 70:510–523

    Article  Google Scholar 

  12. Gao X, Dingfeng X, Cheng M, Gao S (2003) a BCI-based environmental controller for the motion-disabled. IEEE Trans Neural Sys Rehab Eng 11:137–140

    Article  Google Scholar 

  13. Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehab Eng 8:211–214

    Article  Google Scholar 

  14. Sutter EE (1992) The brain response interface: communication through visually-induced electrical brain response. J Microcomput Appl 15:31–45

    Article  Google Scholar 

  15. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  Google Scholar 

  16. Millán J del R, Renkens F, Mouriño J, Gerstner W (2004) Non-invasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng 51:1026–1033

    Article  Google Scholar 

  17. Jasper HA (1958) The ten–twenty system of the international federation. Electroenceph Clin Neurophysiol 10:371–375

    Google Scholar 

  18. Jorgensen C, Binsted K (2005) Web browser control using EMG based sub vocal speech recognition. In: Proceedings 38th Hawaii international conference on system sciences (HICS’05): track 9. Integrating humans with intelligent technologies: merging theories of collaborative intelligence and expert cognition. IEEE Computer Society Press, Big Island, pp 294c

  19. Lenda JA (1978) Manned manoeuvering unit: users guide (Martin Marietta Corp.). Report no: NASA-CR-151864

  20. Scoville ZC, Rajula S (2005) SAFER inspection of space shuttle thermal protection system. In: Proceedings of space 2005 (AIAA 2005-6722), Long Beach

  21. Lujan BF, White RJ (1995) Human physiology in space. NASA Headquarters, Washington

    Google Scholar 

  22. Planel H, Oser H (1984) A survey of space biology and space medicine. ESA Brochure BR-17, European space agency—ESA/ESTEC, Noordwijk

  23. de Metz K, Quadens O, Ferri R, de Graeve M (1992) The electroencephalogram during parabolic flights. Microgravity science experiments on board caravelle in parabolic flights. In: ESA workshop held at ESTEC, Noordwijk, The Netherlands, on June 25, WPP-466, Oct 1992, pp 92–107

  24. Tonet O, Tecchio F, Sepulveda F, Citi L, Tombini M, Marinelli M, Focacci F, Laschi C, Dario P, Rossini PM (2006) Critical review and future perspectives of non-invasive brain-machine interfaces (ESA ariadna study, contract 19707/06/NL/HE—final report). European space agency—ESA/ESTEC, Noordwijk

  25. Buttfield A, Ferrez PW, Millán J del R (2006) Towards a robust BCI: error potentials and online learning. IEEE Trans Neural Sys Rehab Eng 14(2):164–168

    Article  Google Scholar 

  26. Houston A, Rycroft M (1999) Keys to space—an interdisciplinary approach to space studies. McGraw-Hill, Boston

    Google Scholar 

  27. Clément G (2005) Fundamentals of space medicine. Microcosm Press, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  28. McIntyre J, Berthoz A, Lacquaniti F (1998) Reference frames and internal models for visuo-manual coordination: what can we learn from microgravity experiments? Brain Res Brain Res Rev 28(1–2):143–154

    Article  Google Scholar 

  29. Lackner JR, DiZio P (2000) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130(1):2–26

    Article  Google Scholar 

  30. Horneck G, Facius R, Reichert M, Rettberg P, Seboldt W, Manzey D, Comet B, Maillet A, Preiss H, Schauer L, Dussap CG, Poughon L, Belyavin A, Reitz G, Baumstark-Khan C, Gerzer R (2003) HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions. ESA special publication SP-1264, European space agency—ESA/ESTEC, Noordwijk

  31. NASA (2004) Bioastronautics critical path roadmap (draft). NASA Johnson Space Center, Houston

    Google Scholar 

  32. Baumstark-Khan C, Facius R (2002) Life under conditions of ionizing radiation. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin, pp 260–283

    Google Scholar 

  33. Casolino M, Durante M, Mueller-Mellin R, Nieminen P, Reitz G, Shurshakov LV, Sorbi M, Spillantini P (2005) Shielding against cosmic radiation on interplanetary missions. In: Wilson A (ed) ESA SP-1281: topical teams in the life & physical sciences—towards new research activities in space. European Space Agency—ESA/ESTEC, Noordwijk, pp 184–199

    Google Scholar 

  34. Stark JPW (2006) The spacecraft environment and its effect on design. In: Fortescue P, Stark JPW, Swinerd G (eds) Spacecraft systems engineering. Wiley & Sons Ltd, London, pp 11–47

    Google Scholar 

  35. Narici L, Belli F, Bidoli V, Casolino M, De Pascale MP, Di Fino L, Furano G, Modena I, Morselli A, Picozza P, Reali E, Rinaldi A, Ruggieri D, Sparvoli R, Zaconte V, Sannita WG, Carozzo S, Licoccia S, Romagnoli P, Traversa E, Cotronei V, Vazquez M, Miller J, Salnitskii VP, Shevchenko OI, Petrov VP, Trukhanov KA, Galper A, Khodarovich A, Korotkov MG, Popov A, Vavilov N, Avdeev S, Boezio M, Bonvicini W, Vacchi A, Zampa N, Mazzenga G, Ricci M, Spillantini P, Castellini G, Vittori R, Carlson P, Fuglesang C, Schardt D (2004) The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation. Adv Space Res 33(8):1352–1357

    Article  Google Scholar 

  36. Broschart M, de Negueruela C, Millán J del R, Menon C (2007) Augmenting astronaut’s capabilities through brain-machine interfaces. In: Workshop on artificial intelligence for space applications, 20th international joint conference on artificial intelligence (IJCAI). Hyderabad

  37. Horneck G, Baumstark-Khan C, Facius R (2006) Radiation biology. In: Clément G, Slenzka K (eds) Fundamentals of space biology. Microcosm Press & Springer, El Segundo, pp 291–336

    Chapter  Google Scholar 

  38. Pinsky LS, Osborne WZ, Bailey JV, Benson RE, Thompson LF (1974) Light flashes observed by astronauts on Apollo 11 through Apollo 17. Science 183(4128):957–959

    Article  Google Scholar 

  39. Slenzka K (2003) Neuroplasticity changes during space flight. Adv Space Res 31(6):1595–1604

    Article  Google Scholar 

  40. Nudo RJ, Plautz EJ, Milliken GW (1997) Adaptive plasticity in primate motor cortex as a consequence of behavioral experience and neuronal injury. Semin Neurosci 9(1–2):13–23

    Article  Google Scholar 

  41. Benfenati F (2007) Synaptic plasticity and the neurobiology of learning and memory. Acta Biomed 78(Suppl. 1):58–66

    Google Scholar 

  42. Fuijii MD, Patten BM (1992) Neurology of microgravity and space travel. Neurol Clin 10(4):999–1013

    Google Scholar 

  43. Moore MM (2003) Real-world applications for brain-computer interface technology. IEEE Trans Neural Syst Rehabil Eng 11(2):162–165

    Article  Google Scholar 

  44. Ferrez PW, Millán J del R (2005) You Are Wrong!—automatic detection of interaction errors from brain waves. In: Proceedings 19th international joint conference on artificial intelligence (ICAJI). Edinburgh

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina de Negueruela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Negueruela, C., Broschart, M., Menon, C. et al. Brain–computer interfaces for space applications. Pers Ubiquit Comput 15, 527–537 (2011). https://doi.org/10.1007/s00779-010-0322-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-010-0322-8

Keywords

Navigation